ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14965
  4. Cited By
Improving Adversarial Robustness in Weight-quantized Neural Networks

Improving Adversarial Robustness in Weight-quantized Neural Networks

29 December 2020
Chang Song
Elias Fallon
Hai Helen Li
    AAML
ArXivPDFHTML

Papers citing "Improving Adversarial Robustness in Weight-quantized Neural Networks"

4 / 4 papers shown
Title
Breaking the Limits of Quantization-Aware Defenses: QADT-R for Robustness Against Patch-Based Adversarial Attacks in QNNs
Amira Guesmi
B. Ouni
Muhammad Shafique
MQ
AAML
36
0
0
10 Mar 2025
Improving Robustness Against Adversarial Attacks with Deeply Quantized
  Neural Networks
Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks
Ferheen Ayaz
Idris Zakariyya
José Cano
S. Keoh
Jeremy Singer
D. Pau
Mounia Kharbouche-Harrari
19
5
0
25 Apr 2023
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Katie Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
44
12
0
11 Sep 2021
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
1