ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15136
11
8

Exploring Large Context for Cerebral Aneurysm Segmentation

30 December 2020
Jun Ma
Ziwei Nie
    3DPC
ArXivPDFHTML
Abstract

Automated segmentation of aneurysms from 3D CT is important for the diagnosis, monitoring, and treatment planning of the cerebral aneurysm disease. This short paper briefly presents the main technique details of the aneurysm segmentation method in the MICCAI 2020 CADA challenge. The main contribution is that we configure the 3D U-Net with a large patch size, which can obtain the large context. Our method ranked second on the MICCAI 2020 CADA testing dataset with an average Jaccard of 0.7593. Our code and trained models are publicly available at \url{https://github.com/JunMa11/CADA2020}.

View on arXiv
Comments on this paper