ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.01100
  4. Cited By
Wasserstein barycenters are NP-hard to compute

Wasserstein barycenters are NP-hard to compute

4 January 2021
Jason M. Altschuler
Enric Boix-Adserà
    OT
ArXivPDFHTML

Papers citing "Wasserstein barycenters are NP-hard to compute"

6 / 6 papers shown
Title
Multi-Output Distributional Fairness via Post-Processing
Multi-Output Distributional Fairness via Post-Processing
Gang Li
Qihang Lin
Ayush Ghosh
Tianbao Yang
47
0
0
31 Aug 2024
Kullback-Leibler Barycentre of Stochastic Processes
Kullback-Leibler Barycentre of Stochastic Processes
S. Jaimungal
Silvana M. Pesenti
33
1
0
05 Jul 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
22
2
0
02 Oct 2023
Doubly Regularized Entropic Wasserstein Barycenters
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
8
11
0
21 Mar 2023
Sampling From the Wasserstein Barycenter
Sampling From the Wasserstein Barycenter
Chiheb Daaloul
Thibaut Le Gouic
J. Liandrat
M. I. O. Technology
11
6
0
04 May 2021
Bayesian Learning with Wasserstein Barycenters
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
15
29
0
28 May 2018
1