ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.02471
  4. Cited By
PandaNet : Anchor-Based Single-Shot Multi-Person 3D Pose Estimation

PandaNet : Anchor-Based Single-Shot Multi-Person 3D Pose Estimation

7 January 2021
Abdallah Benzine
Florian Chabot
B. Luvison
Q. C. Pham
Catherine Achard
    3DH
ArXivPDFHTML

Papers citing "PandaNet : Anchor-Based Single-Shot Multi-Person 3D Pose Estimation"

6 / 6 papers shown
Title
AvatarPose: Avatar-guided 3D Pose Estimation of Close Human Interaction
  from Sparse Multi-view Videos
AvatarPose: Avatar-guided 3D Pose Estimation of Close Human Interaction from Sparse Multi-view Videos
Feichi Lu
Zijian Dong
Jie Song
Otmar Hilliges
3DH
18
0
0
04 Aug 2024
A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis
A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis
S. Nguyen
Maxime Devanne
O. Rémy-Néris
Mathieu Lempereur
André Thepaut
40
4
0
29 Jun 2024
Human Body Pose Estimation for Gait Identification: A Comprehensive
  Survey of Datasets and Models
Human Body Pose Estimation for Gait Identification: A Comprehensive Survey of Datasets and Models
Luke K. Topham
Wasiq Khan
D. Al-Jumeily
A. Hussain
CVBM
19
32
0
23 May 2023
AdaptivePose++: A Powerful Single-Stage Network for Multi-Person Pose
  Regression
AdaptivePose++: A Powerful Single-Stage Network for Multi-Person Pose Regression
Yabo Xiao
Xiaojuan Wang
Dongdong Yu
Kai Su
Lei Jin
Mei Song
Shuicheng Yan
Jian-jun Zhao
3DH
10
5
0
08 Oct 2022
Describe me if you can! Characterized Instance-level Human Parsing
Describe me if you can! Characterized Instance-level Human Parsing
Angélique Loesch
Romaric Audigier
10
7
0
24 Jan 2022
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
177
5,138
0
16 Sep 2016
1