ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03468
  4. Cited By
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
v1v2v3 (latest)

HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise

IEEE Transactions on Signal Processing (IEEE TSP), 2021
10 January 2021
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
ArXiv (abs)PDFHTML

Papers citing "HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise"

9 / 9 papers shown
Title
ALPCAHUS: Subspace Clustering for Heteroscedastic Data
ALPCAHUS: Subspace Clustering for Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
274
0
0
25 May 2025
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
Daniel Cederberg
177
0
0
17 May 2025
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic DataIEEE Transactions on Signal Processing (IEEE TSP), 2025
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
203
4
0
12 May 2025
The Fisher-Rao geometry of CES distributions
The Fisher-Rao geometry of CES distributions
Florent Bouchard
A. Breloy
Antoine Collas
Alexandre Renaux
G. Ginolhac
196
7
0
02 Oct 2023
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value
  Regularization
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value RegularizationInternational Conference on Sampling Theory and Applications (SampTA), 2023
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
318
2
0
06 Jul 2023
HeMPPCAT: Mixtures of Probabilistic Principal Component Analysers for
  Data with Heteroscedastic Noise
HeMPPCAT: Mixtures of Probabilistic Principal Component Analysers for Data with Heteroscedastic NoiseIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Alec S. Xu
Laura Balzano
Jeffrey A. Fessler
102
2
0
21 Jan 2023
Matrix Denoising with Partial Noise Statistics: Optimal Singular Value
  Shrinkage of Spiked F-Matrices
Matrix Denoising with Partial Noise Statistics: Optimal Singular Value Shrinkage of Spiked F-MatricesInformation and Inference A Journal of the IMA (JIII), 2022
M. Gavish
W. Leeb
Elad Romanov
209
6
0
02 Nov 2022
Biwhitening Reveals the Rank of a Count Matrix
Biwhitening Reveals the Rank of a Count MatrixSIAM Journal on Mathematics of Data Science (SIMODS), 2021
Boris Landa
Thomas T. Zhang
Y. Kluger
316
25
0
25 Mar 2021
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
232
34
0
30 Oct 2018
1