Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.06197
Cited By
v1
v2
v3 (latest)
Deciding What to Learn: A Rate-Distortion Approach
15 January 2021
Dilip Arumugam
Benjamin Van Roy
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deciding What to Learn: A Rate-Distortion Approach"
18 / 18 papers shown
Title
Gone With the Bits: Revealing Racial Bias in Low-Rate Neural Compression for Facial Images
Tian Qiu
Arjun Nichani
Rasta Tadayontahmasebi
Haewon Jeong
66
0
0
05 May 2025
Satisficing Exploration for Deep Reinforcement Learning
Dilip Arumugam
Saurabh Kumar
Ramki Gummadi
Benjamin Van Roy
67
1
0
16 Jul 2024
Exploration Unbound
Dilip Arumugam
Wanqiao Xu
Benjamin Van Roy
75
0
0
16 Jul 2024
Learning telic-controllable state representations
Nadav Amir
Stas Tiomkin
Angela Langdon
92
0
0
20 Jun 2024
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
199
0
0
26 May 2024
Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning
Qiaosheng Zhang
Chenjia Bai
Shuyue Hu
Zhen Wang
Xuelong Li
113
1
0
30 Apr 2024
Information Capacity Regret Bounds for Bandits with Mediator Feedback
Khaled Eldowa
Nicolò Cesa-Bianchi
Alberto Maria Metelli
Marcello Restelli
49
2
0
15 Feb 2024
Efficient Exploration for LLMs
Vikranth Dwaracherla
S. Asghari
Botao Hao
Benjamin Van Roy
LLMAG
95
22
0
01 Feb 2024
Domain Generalization without Excess Empirical Risk
Ozan Sener
V. Koltun
74
9
0
30 Aug 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
86
8
0
05 May 2023
Online Learning-based Waveform Selection for Improved Vehicle Recognition in Automotive Radar
C. Thornton
William W. Howard
R. M. Buehrer
50
2
0
01 Dec 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
91
4
0
30 Oct 2022
Linear Jamming Bandits: Sample-Efficient Learning for Non-Coherent Digital Jamming
C. Thornton
R. M. Buehrer
21
4
0
05 Jul 2022
Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning
Dilip Arumugam
Benjamin Van Roy
OffRL
80
15
0
04 Jun 2022
Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning
Dilip Arumugam
Benjamin Van Roy
OffRL
70
1
0
04 Jun 2022
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
124
18
0
04 May 2022
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
75
12
0
26 Oct 2021
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
126
70
0
06 Mar 2021
1