ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08696
  4. Cited By
Sum-Rate-Distortion Function for Indirect Multiterminal Source Coding in
  Federated Learning

Sum-Rate-Distortion Function for Indirect Multiterminal Source Coding in Federated Learning

21 January 2021
Naifu Zhang
M. Tao
Jia Wang
    FedML
ArXivPDFHTML

Papers citing "Sum-Rate-Distortion Function for Indirect Multiterminal Source Coding in Federated Learning"

3 / 3 papers shown
Title
Fundamental Limits of Communication Efficiency for Model Aggregation in
  Distributed Learning: A Rate-Distortion Approach
Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach
Naifu Zhang
M. Tao
Jia Wang
Fan Xu
19
13
0
28 Jun 2022
Convergence of Update Aware Device Scheduling for Federated Learning at
  the Wireless Edge
Convergence of Update Aware Device Scheduling for Federated Learning at the Wireless Edge
M. Amiri
Deniz Gunduz
Sanjeev R. Kulkarni
H. Vincent Poor
95
170
0
28 Jan 2020
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,688
0
14 Apr 2018
1