Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.12037
Cited By
BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data
28 January 2021
Demetres Kostas
Stephane Aroca-Ouellette
Frank Rudzicz
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data"
14 / 14 papers shown
Title
KnowEEG: Explainable Knowledge Driven EEG Classification
A. Sahota
Navid Mohammadi Foumani
Raúl Santos-Rodríguez
Z. Abdallah
14
0
0
01 May 2025
How Redundant Is the Transformer Stack in Speech Representation Models?
Teresa Dorszewski
Albert Kjøller Jacobsen
Lenka Tětková
Lars Kai Hansen
104
0
0
20 Jan 2025
Wearable Accelerometer Foundation Models for Health via Knowledge Distillation
Salar Abbaspourazad
Anshuman Mishra
Joseph D. Futoma
Andrew C. Miller
Ian Shapiro
75
0
0
15 Dec 2024
Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning
Toyotaro Suzumura
H. Kanezashi
Shotaro Akahori
AI4MH
69
0
0
25 Nov 2024
NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals
Wei-Bang Jiang
Yansen Wang
Bao-Liang Lu
Dongsheng Li
26
10
0
27 Aug 2024
Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals
Hui Zheng
Haiteng Wang
Wei-Bang Jiang
Zhongtao Chen
Li He
Pei-Yang Lin
Peng-Hu Wei
Guo-Guang Zhao
Yun-Zhe Liu
35
1
0
19 May 2024
Foundational GPT Model for MEG
Richard Csaky
M. Es
Oiwi Parker Jones
M. Woolrich
21
2
0
14 Apr 2024
NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
Cheol-Hui Lee
Hakseung Kim
Hyun-jee Han
Min-Kyung Jung
Byung C. Yoon
Dong-Joo Kim
18
5
0
10 Apr 2024
Self-supervised Learning for Electroencephalogram: A Systematic Survey
Weining Weng
Yang Gu
Shuai Guo
Yuan Ma
Zhaohua Yang
Yuchen Liu
Yiqiang Chen
14
12
0
09 Jan 2024
Series2Vec: Similarity-based Self-supervised Representation Learning for Time Series Classification
Navid Mohammadi Foumani
Chang Wei Tan
Geoffrey I. Webb
Hamid Rezatofighi
Mahsa Salehi
SSL
AI4TS
13
4
0
07 Dec 2023
Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning
Aristotelis Ballas
Vasileios Papapanagiotou
Christos Diou
12
0
0
01 Dec 2023
Semi-Supervised End-To-End Contrastive Learning For Time Series Classification
Hui Cai
Xiang Zhang
Xiaofeng Liu
AI4TS
23
0
0
13 Oct 2023
Aggregating Intrinsic Information to Enhance BCI Performance through Federated Learning
Rui Liu
Yuanyuan Chen
Anran Li
Y. Ding
Han Yu
Cuntai Guan
FedML
21
7
0
14 Aug 2023
Overcoming the Domain Gap in Neural Action Representations
Semih Günel
Florian Aymanns
S. Honari
Pavan Ramdya
Pascal Fua
10
3
0
02 Dec 2021
1