ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.01807
  4. Cited By
Building population models for large-scale neural recordings:
  opportunities and pitfalls
v1v2v3v4 (latest)

Building population models for large-scale neural recordings: opportunities and pitfalls

Current Opinion in Neurobiology (Curr Opin Neurobiol), 2021
3 February 2021
C. Hurwitz
N. Kudryashova
A. Onken
Matthias H Hennig
ArXiv (abs)PDFHTML

Papers citing "Building population models for large-scale neural recordings: opportunities and pitfalls"

9 / 9 papers shown
Neural Encoding and Decoding at Scale
Neural Encoding and Decoding at Scale
Yizi Zhang
Yanchen Wang
Mehdi Azabou
Alexandre Andre
Zixuan Wang
Hanrui Lyu
International Brain Laboratory
Eva L. Dyer
Liam Paninski
Cole Hurwitz
AI4CE
545
13
0
11 Apr 2025
Self-supervised contrastive learning performs non-linear system identification
Self-supervised contrastive learning performs non-linear system identificationInternational Conference on Learning Representations (ICLR), 2024
Rodrigo González Laiz
Tobias Schmidt
Steffen Schneider
SSL
283
4
0
18 Oct 2024
A Unified, Scalable Framework for Neural Population Decoding
A Unified, Scalable Framework for Neural Population DecodingNeural Information Processing Systems (NeurIPS), 2023
Mehdi Azabou
Vinam Arora
Venkataramana Ganesh
Ximeng Mao
Santosh Nachimuthu
Michael J. Mendelson
Blake A. Richards
M. Perich
Guillaume Lajoie
Eva L. Dyer
HAIAI4TS
229
79
0
24 Oct 2023
Expressive architectures enhance interpretability of dynamics-based
  neural population models
Expressive architectures enhance interpretability of dynamics-based neural population modelsNeurons, Behavior, Data analysis, and Theory (NBDT), 2022
Andrew R. Sedler
Chris VerSteeg
C. Pandarinath
306
15
0
07 Dec 2022
Capturing cross-session neural population variability through
  self-supervised identification of consistent neuron ensembles
Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles
Justin Jude
M. Perich
L. Miller
Matthias H Hennig
176
5
0
19 May 2022
Testing the Tools of Systems Neuroscience on Artificial Neural Networks
Testing the Tools of Systems Neuroscience on Artificial Neural Networks
Grace W. Lindsay
129
4
0
14 Feb 2022
Robust alignment of cross-session recordings of neural population
  activity by behaviour via unsupervised domain adaptation
Robust alignment of cross-session recordings of neural population activity by behaviour via unsupervised domain adaptationInternational Conference on Machine Learning (ICML), 2022
Justin Jude
M. Perich
L. Miller
Matthias H Hennig
192
23
0
12 Feb 2022
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
520
110
0
09 Sep 2021
Parametric Copula-GP model for analyzing multidimensional neuronal and
  behavioral relationships
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
N. Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L Rochefort
A. Onken
173
7
0
03 Aug 2020
1