ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.02611
  4. Cited By
CKConv: Continuous Kernel Convolution For Sequential Data

CKConv: Continuous Kernel Convolution For Sequential Data

4 February 2021
David W. Romero
Anna Kuzina
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
ArXivPDFHTML

Papers citing "CKConv: Continuous Kernel Convolution For Sequential Data"

17 / 17 papers shown
Title
Towards Scalable and Stable Parallelization of Nonlinear RNNs
Towards Scalable and Stable Parallelization of Nonlinear RNNs
Xavier Gonzalez
Andrew Warrington
Jimmy T.H. Smith
Scott W. Linderman
83
8
0
17 Jan 2025
Tuning Frequency Bias of State Space Models
Tuning Frequency Bias of State Space Models
Annan Yu
Dongwei Lyu
S. H. Lim
Michael W. Mahoney
N. Benjamin Erichson
38
2
0
02 Oct 2024
Variational Partial Group Convolutions for Input-Aware Partial
  Equivariance of Rotations and Color-Shifts
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts
Hyunsu Kim
Yegon Kim
Hongseok Yang
Juho Lee
37
0
0
05 Jul 2024
SE(3)-Hyena Operator for Scalable Equivariant Learning
SE(3)-Hyena Operator for Scalable Equivariant Learning
Artem Moskalev
Mangal Prakash
Rui Liao
Tommaso Mansi
44
2
0
01 Jul 2024
Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling
Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling
Mahdi Karami
Ali Ghodsi
VLM
40
6
0
28 Feb 2024
TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting
TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting
Nancy R. Xu
Chrysoula Kosma
Michalis Vazirgiannis
AI4TS
AI4CE
30
6
0
27 Jul 2023
Focus Your Attention (with Adaptive IIR Filters)
Focus Your Attention (with Adaptive IIR Filters)
Shahar Lutati
Itamar Zimerman
Lior Wolf
32
9
0
24 May 2023
Simple Hardware-Efficient Long Convolutions for Sequence Modeling
Simple Hardware-Efficient Long Convolutions for Sequence Modeling
Daniel Y. Fu
Elliot L. Epstein
Eric N. D. Nguyen
A. Thomas
Michael Zhang
Tri Dao
Atri Rudra
Christopher Ré
11
51
0
13 Feb 2023
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
24
5
0
12 Dec 2022
S4ND: Modeling Images and Videos as Multidimensional Signals Using State
  Spaces
S4ND: Modeling Images and Videos as Multidimensional Signals Using State Spaces
Eric N. D. Nguyen
Karan Goel
Albert Gu
Gordon W. Downs
Preey Shah
Tri Dao
S. Baccus
Christopher Ré
VLM
22
38
0
12 Oct 2022
Liquid Structural State-Space Models
Liquid Structural State-Space Models
Ramin Hasani
Mathias Lechner
Tsun-Hsuan Wang
Makram Chahine
Alexander Amini
Daniela Rus
AI4TS
97
95
0
26 Sep 2022
On the Parameterization and Initialization of Diagonal State Space
  Models
On the Parameterization and Initialization of Diagonal State Space Models
Albert Gu
Ankit Gupta
Karan Goel
Christopher Ré
14
296
0
23 Jun 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
Xiaohan Ding
X. Zhang
Yi Zhou
Jungong Han
Guiguang Ding
Jian-jun Sun
VLM
47
525
0
13 Mar 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
16
1,644
0
31 Oct 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel
  Sizes
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
Robert-Jan Bruintjes
Jakub M. Tomczak
Erik J. Bekkers
Mark Hoogendoorn
J. C. V. Gemert
80
81
0
15 Oct 2021
Recurrent Neural Networks for Multivariate Time Series with Missing
  Values
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
205
1,895
0
06 Jun 2016
1