ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.02770
  4. Cited By
A Living Review of Machine Learning for Particle Physics

A Living Review of Machine Learning for Particle Physics

2 February 2021
Matthew Feickert
Benjamin Nachman
    KELM
    AI4CE
ArXivPDFHTML

Papers citing "A Living Review of Machine Learning for Particle Physics"

30 / 30 papers shown
Title
Unraveling particle dark matter with Physics-Informed Neural Networks
Unraveling particle dark matter with Physics-Informed Neural Networks
M.P. Bento
H.B. Câmara
J.F. Seabra
60
0
0
24 Feb 2025
Machine-Learning Analysis of Radiative Decays to Dark Matter at the LHC
Machine-Learning Analysis of Radiative Decays to Dark Matter at the LHC
E. Arganda
Marcela Carena
M. D. L. Rios
A. D. Perez
Duncan Rocha
Rosa María Sandá Seoane
Carlos E. M. Wagner
AI4CE
23
0
0
17 Oct 2024
Quantum Vision Transformers for Quark-Gluon Classification
Quantum Vision Transformers for Quark-Gluon Classification
Marçal Comajoan Cara
Gopal Ramesh Dahale
Zhongtian Dong
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
45
9
0
16 May 2024
$\mathbb{Z}_2\times \mathbb{Z}_2$ Equivariant Quantum Neural Networks:
  Benchmarking against Classical Neural Networks
Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2Z2​×Z2​ Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
Zhongtian Dong
Marçal Comajoan Cara
Gopal Ramesh Dahale
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
22
5
0
30 Nov 2023
Configurable calorimeter simulation for AI applications
Configurable calorimeter simulation for AI applications
F. D. Di Bello
Anton Charkin-Gorbulin
Kyle Cranmer
Etienne Dreyer
S. Ganguly
...
Lorenzo Santi
Marumi Kado
N. Kakati
P. Rieck
Matteo Tusoni
11
9
0
03 Mar 2023
Resonant Anomaly Detection with Multiple Reference Datasets
Resonant Anomaly Detection with Multiple Reference Datasets
Mayee F. Chen
Benjamin Nachman
Frederic Sala
25
5
0
20 Dec 2022
Machine-Learned Exclusion Limits without Binning
Machine-Learned Exclusion Limits without Binning
E. Arganda
Andrés D. Pérez
M. D. L. Rios
Rosa María Sandá Seoane
30
9
0
09 Nov 2022
Benchmarking energy consumption and latency for neuromorphic computing
  in condensed matter and particle physics
Benchmarking energy consumption and latency for neuromorphic computing in condensed matter and particle physics
Dominique J. Kösters
Bryan A. Kortman
I. Boybat
Elena Ferro
Sagar Dolas
...
T. Rasing
H. Riel
A. Sebastian
S. Caron
J. Mentink
43
13
0
21 Sep 2022
Exploration of Parameter Spaces Assisted by Machine Learning
Exploration of Parameter Spaces Assisted by Machine Learning
A. Hammad
Myeonghun Park
Raymundo Ramos
Pankaj Saha
8
15
0
20 Jul 2022
Data Science and Machine Learning in Education
Data Science and Machine Learning in Education
G. Benelli
Thomas Y. Chen
Javier Mauricio Duarte
Matthew Feickert
Matthew Graham
...
K. Terao
S. Thais
A. Roy
J. Vlimant
G. Chachamis
AI4CE
26
5
0
19 Jul 2022
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics
  with Machine Learning
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning
Abdulhakim Alnuqaydan
S. Gleyzer
Harrison B. Prosper
16
14
0
17 Jun 2022
Bias and Priors in Machine Learning Calibrations for High Energy Physics
Bias and Priors in Machine Learning Calibrations for High Energy Physics
Rikab Gambhir
Benjamin Nachman
Jesse Thaler
AI4CE
20
7
0
10 May 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
36
113
0
07 Dec 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
30
17
0
16 Sep 2021
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino
  Detectability Using Machine Learning
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino Detectability Using Machine Learning
Daniel Alvestad
N. Fomin
Jörn Kersten
S. Maeland
Inga Strümke
11
11
0
06 Aug 2021
Optimising simulations for diphoton production at hadron colliders using
  amplitude neural networks
Optimising simulations for diphoton production at hadron colliders using amplitude neural networks
Joseph Aylett-Bullock
S. Badger
Ryan Moodie
11
22
0
17 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
25
81
0
09 Jun 2021
Towards a method to anticipate dark matter signals with deep learning at
  the LHC
Towards a method to anticipate dark matter signals with deep learning at the LHC
E. Arganda
A. Medina
A. D. Perez
A. Szynkman
11
7
0
25 May 2021
The Tracking Machine Learning challenge : Throughput phase
The Tracking Machine Learning challenge : Throughput phase
S. Amrouche
L. Basara
P. Calafiura
D. Emeliyanov
Victor Estrade
...
E. Moyse
D. Rousseau
A. Salzburger
Andrey Ustyuzhanin
J. Vlimant
118
31
0
03 May 2021
Invariant polynomials and machine learning
Invariant polynomials and machine learning
W. Haddadin
32
7
0
26 Apr 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
13
83
0
19 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
13
44
0
05 Apr 2021
A Convolutional Neural Network based Cascade Reconstruction for the
  IceCube Neutrino Observatory
A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory
R. Abbasi
M. Ackermann
J. Adams
J. Aguilar
M. Ahlers
...
Y. Xu
J. Yáñez
S. Yoshida
T. Yuan
Z. Zhang
30
46
0
27 Jan 2021
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
107
76
0
21 Jan 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
27
33
0
18 Jan 2021
Simulating the Time Projection Chamber responses at the MPD detector
  using Generative Adversarial Networks
Simulating the Time Projection Chamber responses at the MPD detector using Generative Adversarial Networks
A. Maevskiy
F. Ratnikov
A. Zinchenko
V. Riabov
50
12
0
08 Dec 2020
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
386
0
16 Apr 2018
Fuzzy Jets
Fuzzy Jets
Lester W. Mackey
Benjamin Nachman
A. Schwartzman
Conrad Stansbury
14
12
0
07 Sep 2015
Machine learning approach to inverse problem and unfolding procedure
Machine learning approach to inverse problem and unfolding procedure
N. Gagunashvili
36
20
0
12 Apr 2010
1