ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03291
  4. Cited By
baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal
  Modeling

baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling

5 February 2021
Michael A. Alcorn
Anh Totti Nguyen
ArXivPDFHTML

Papers citing "baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling"

3 / 3 papers shown
Title
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly
  Estimating Complex SO(3) Distributions
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly Estimating Complex SO(3) Distributions
Michael A. Alcorn
16
0
0
21 Jan 2023
Transformer Networks for Trajectory Forecasting
Transformer Networks for Trajectory Forecasting
Francesco Giuliari
Irtiza Hasan
Marco Cristani
Fabio Galasso
111
365
0
18 Mar 2020
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
31,150
0
16 Jan 2013
1