ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04010
  4. Cited By
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch

Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch

8 February 2021
Aojun Zhou
Yukun Ma
Junnan Zhu
Jianbo Liu
Zhijie Zhang
Kun Yuan
Wenxiu Sun
Hongsheng Li
ArXivPDFHTML

Papers citing "Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch"

50 / 145 papers shown
Title
A Survey on Transformer Compression
A Survey on Transformer Compression
Yehui Tang
Yunhe Wang
Jianyuan Guo
Zhijun Tu
Kai Han
Hailin Hu
Dacheng Tao
29
27
0
05 Feb 2024
Shortened LLaMA: Depth Pruning for Large Language Models with Comparison
  of Retraining Methods
Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods
Bo-Kyeong Kim
Geonmin Kim
Tae-Ho Kim
Thibault Castells
Shinkook Choi
Junho Shin
Hyoung-Kyu Song
62
30
0
05 Feb 2024
The LLM Surgeon
The LLM Surgeon
Tycho F. A. van der Ouderaa
Markus Nagel
M. V. Baalen
Yuki Markus Asano
Tijmen Blankevoort
26
14
0
28 Dec 2023
Model-Based Control with Sparse Neural Dynamics
Model-Based Control with Sparse Neural Dynamics
Ziang Liu
Genggeng Zhou
Jeff He
Tobia Marcucci
Fei-Fei Li
Jiajun Wu
Yunzhu Li
AI4CE
35
17
0
20 Dec 2023
Fluctuation-based Adaptive Structured Pruning for Large Language Models
Fluctuation-based Adaptive Structured Pruning for Large Language Models
Yongqi An
Xu Zhao
Tao Yu
Ming Tang
Jinqiao Wang
31
42
0
19 Dec 2023
USM-Lite: Quantization and Sparsity Aware Fine-tuning for Speech
  Recognition with Universal Speech Models
USM-Lite: Quantization and Sparsity Aware Fine-tuning for Speech Recognition with Universal Speech Models
Shaojin Ding
David Qiu
David Rim
Yanzhang He
Oleg Rybakov
...
Tara N. Sainath
Zhonglin Han
Jian Li
Amir Yazdanbakhsh
Shivani Agrawal
MQ
26
9
0
13 Dec 2023
MaxQ: Multi-Axis Query for N:M Sparsity Network
MaxQ: Multi-Axis Query for N:M Sparsity Network
Jingyang Xiang
Siqi Li
Junhao Chen
Zhuangzhi Chen
Tianxin Huang
Linpeng Peng
Yong-Jin Liu
16
0
0
12 Dec 2023
The Efficiency Spectrum of Large Language Models: An Algorithmic Survey
The Efficiency Spectrum of Large Language Models: An Algorithmic Survey
Tianyu Ding
Tianyi Chen
Haidong Zhu
Jiachen Jiang
Yiqi Zhong
Jinxin Zhou
Guangzhi Wang
Zhihui Zhu
Ilya Zharkov
Luming Liang
27
22
0
01 Dec 2023
E-Sparse: Boosting the Large Language Model Inference through
  Entropy-based N:M Sparsity
E-Sparse: Boosting the Large Language Model Inference through Entropy-based N:M Sparsity
Yun Li
Lin Niu
Xipeng Zhang
Kai Liu
Jianchen Zhu
Zhanhui Kang
MoE
32
11
0
24 Oct 2023
Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
  Multi-DNN Workloads
Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse Multi-DNN Workloads
Hongxiang Fan
Stylianos I. Venieris
Alexandros Kouris
Nicholas D. Lane
15
7
0
17 Oct 2023
Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs
Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs
Yu-xin Zhang
Lirui Zhao
Mingbao Lin
Yunyun Sun
Yiwu Yao
Xingjia Han
Jared Tanner
Shiwei Liu
Rongrong Ji
SyDa
37
40
0
13 Oct 2023
SUBP: Soft Uniform Block Pruning for 1xN Sparse CNNs Multithreading
  Acceleration
SUBP: Soft Uniform Block Pruning for 1xN Sparse CNNs Multithreading Acceleration
Jingyang Xiang
Siqi Li
Jun Chen
Shipeng Bai
Yukai Ma
Guang Dai
Yong-Jin Liu
24
1
0
10 Oct 2023
Compressing LLMs: The Truth is Rarely Pure and Never Simple
Compressing LLMs: The Truth is Rarely Pure and Never Simple
Ajay Jaiswal
Zhe Gan
Xianzhi Du
Bowen Zhang
Zhangyang Wang
Yinfei Yang
MQ
36
45
0
02 Oct 2023
Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs
  "Difficult" Downstream Tasks in LLMs
Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs "Difficult" Downstream Tasks in LLMs
Lu Yin
Ajay Jaiswal
Shiwei Liu
Souvik Kundu
Zhangyang Wang
22
7
0
29 Sep 2023
Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and
  Dataflow Co-Design
Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design
Chao Fang
Wei Sun
Aojun Zhou
Zhongfeng Wang
11
3
0
22 Sep 2023
Scaling Laws for Sparsely-Connected Foundation Models
Scaling Laws for Sparsely-Connected Foundation Models
Elias Frantar
C. Riquelme
N. Houlsby
Dan Alistarh
Utku Evci
18
35
0
15 Sep 2023
Towards Artificial General Intelligence (AGI) in the Internet of Things
  (IoT): Opportunities and Challenges
Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges
Fei Dou
Jin Ye
Geng Yuan
Qin Lu
Wei Niu
...
Hongyue Sun
Yunli Shao
Changying Li
Tianming Liu
Wenzhan Song
AI4CE
21
29
0
14 Sep 2023
Bandwidth-efficient Inference for Neural Image Compression
Bandwidth-efficient Inference for Neural Image Compression
Shanzhi Yin
Tongda Xu
Yongsheng Liang
Yuanyuan Wang
Yanghao Li
Yan Wang
Jingjing Liu
23
1
0
06 Sep 2023
RecycleGPT: An Autoregressive Language Model with Recyclable Module
RecycleGPT: An Autoregressive Language Model with Recyclable Module
Yu Jiang
Qiaozhi He
Xiaomin Zhuang
Zhihua Wu
Kunpeng Wang
Wenlai Zhao
Guangwen Yang
KELM
23
3
0
07 Aug 2023
Rosko: Row Skipping Outer Products for Sparse Matrix Multiplication
  Kernels
Rosko: Row Skipping Outer Products for Sparse Matrix Multiplication Kernels
Vikas Natesh
Andrew Sabot
H. T. Kung
Mark Ting
17
0
0
08 Jul 2023
Systematic Investigation of Sparse Perturbed Sharpness-Aware
  Minimization Optimizer
Systematic Investigation of Sparse Perturbed Sharpness-Aware Minimization Optimizer
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Tianshuo Xu
Xiaoshuai Sun
Tongliang Liu
Rongrong Ji
Dacheng Tao
AAML
33
2
0
30 Jun 2023
An Efficient Sparse Inference Software Accelerator for Transformer-based
  Language Models on CPUs
An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs
Haihao Shen
Hengyu Meng
Bo Dong
Zhe Wang
Ofir Zafrir
...
Hanwen Chang
Qun Gao
Zi. Wang
Guy Boudoukh
Moshe Wasserblat
MoE
31
4
0
28 Jun 2023
Efficient Online Processing with Deep Neural Networks
Efficient Online Processing with Deep Neural Networks
Lukas Hedegaard
18
0
0
23 Jun 2023
Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse
  Training
Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse Training
A. Nowak
Bram Grooten
D. Mocanu
Jacek Tabor
21
9
0
21 Jun 2023
A Simple and Effective Pruning Approach for Large Language Models
A Simple and Effective Pruning Approach for Large Language Models
Mingjie Sun
Zhuang Liu
Anna Bair
J. Zico Kolter
56
353
0
20 Jun 2023
Spatial Re-parameterization for N:M Sparsity
Spatial Re-parameterization for N:M Sparsity
Yu-xin Zhang
Mingbao Lin
Yunshan Zhong
Mengzhao Chen
Fei Chao
Rongrong Ji
39
2
0
09 Jun 2023
The Emergence of Essential Sparsity in Large Pre-trained Models: The
  Weights that Matter
The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter
Ajay Jaiswal
Shiwei Liu
Tianlong Chen
Zhangyang Wang
VLM
21
33
0
06 Jun 2023
Dynamic Sparsity Is Channel-Level Sparsity Learner
Dynamic Sparsity Is Channel-Level Sparsity Learner
Lu Yin
Gen Li
Meng Fang
Lijuan Shen
Tianjin Huang
Zhangyang Wang
Vlado Menkovski
Xiaolong Ma
Mykola Pechenizkiy
Shiwei Liu
19
20
0
30 May 2023
HighLight: Efficient and Flexible DNN Acceleration with Hierarchical
  Structured Sparsity
HighLight: Efficient and Flexible DNN Acceleration with Hierarchical Structured Sparsity
Yannan Nellie Wu
Po-An Tsai
Saurav Muralidharan
A. Parashar
Vivienne Sze
J. Emer
21
23
0
22 May 2023
PDP: Parameter-free Differentiable Pruning is All You Need
PDP: Parameter-free Differentiable Pruning is All You Need
Minsik Cho
Saurabh N. Adya
Devang Naik
VLM
15
10
0
18 May 2023
Dynamic Sparse Training with Structured Sparsity
Dynamic Sparse Training with Structured Sparsity
Mike Lasby
A. Golubeva
Utku Evci
Mihai Nica
Yani Andrew Ioannou
29
19
0
03 May 2023
JaxPruner: A concise library for sparsity research
JaxPruner: A concise library for sparsity research
Jooyoung Lee
Wonpyo Park
Nicole Mitchell
Jonathan Pilault
J. Obando-Ceron
...
Hong-Seok Kim
Yann N. Dauphin
Karolina Dziugaite
P. S. Castro
Utku Evci
33
14
0
27 Apr 2023
STen: Productive and Efficient Sparsity in PyTorch
STen: Productive and Efficient Sparsity in PyTorch
Andrei Ivanov
Nikoli Dryden
Tal Ben-Nun
Saleh Ashkboos
Torsten Hoefler
30
4
0
15 Apr 2023
Training Large Language Models Efficiently with Sparsity and Dataflow
Training Large Language Models Efficiently with Sparsity and Dataflow
V. Srinivasan
Darshan Gandhi
Urmish Thakker
R. Prabhakar
MoE
28
6
0
11 Apr 2023
SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
  Models
SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models
Vithursan Thangarasa
Abhay Gupta
William Marshall
Tianda Li
Kevin Leong
D. DeCoste
Sean Lie
Shreyas Saxena
MoE
AI4CE
16
18
0
18 Mar 2023
VEGETA: Vertically-Integrated Extensions for Sparse/Dense GEMM Tile
  Acceleration on CPUs
VEGETA: Vertically-Integrated Extensions for Sparse/Dense GEMM Tile Acceleration on CPUs
Geonhwa Jeong
S. Damani
A. Bambhaniya
Eric Qin
C. Hughes
S. Subramoney
Hyesoon Kim
T. Krishna
MoE
19
24
0
17 Feb 2023
Workload-Balanced Pruning for Sparse Spiking Neural Networks
Workload-Balanced Pruning for Sparse Spiking Neural Networks
Ruokai Yin
Youngeun Kim
Yuhang Li
Abhishek Moitra
Nitin Satpute
Anna Hambitzer
Priyadarshini Panda
23
18
0
13 Feb 2023
Automatic Noise Filtering with Dynamic Sparse Training in Deep
  Reinforcement Learning
Automatic Noise Filtering with Dynamic Sparse Training in Deep Reinforcement Learning
Bram Grooten
Ghada Sokar
Shibhansh Dohare
Elena Mocanu
Matthew E. Taylor
Mykola Pechenizkiy
D. Mocanu
25
11
0
13 Feb 2023
Bi-directional Masks for Efficient N:M Sparse Training
Bi-directional Masks for Efficient N:M Sparse Training
Yu-xin Zhang
Yiting Luo
Mingbao Lin
Yunshan Zhong
Jingjing Xie
Fei Chao
Rongrong Ji
44
15
0
13 Feb 2023
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook
  for Sparse Neural Network Researchers
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers
Shiwei Liu
Zhangyang Wang
30
30
0
06 Feb 2023
STEP: Learning N:M Structured Sparsity Masks from Scratch with
  Precondition
STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition
Yucheng Lu
Shivani Agrawal
Suvinay Subramanian
Oleg Rybakov
Chris De Sa
Amir Yazdanbakhsh
16
16
0
02 Feb 2023
When Layers Play the Lottery, all Tickets Win at Initialization
When Layers Play the Lottery, all Tickets Win at Initialization
Artur Jordão
George Correa de Araujo
H. Maia
Hélio Pedrini
13
3
0
25 Jan 2023
Why is the State of Neural Network Pruning so Confusing? On the
  Fairness, Comparison Setup, and Trainability in Network Pruning
Why is the State of Neural Network Pruning so Confusing? On the Fairness, Comparison Setup, and Trainability in Network Pruning
Huan Wang
Can Qin
Yue Bai
Yun Fu
32
20
0
12 Jan 2023
SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
Elias Frantar
Dan Alistarh
VLM
30
624
0
02 Jan 2023
Where to Pay Attention in Sparse Training for Feature Selection?
Where to Pay Attention in Sparse Training for Feature Selection?
Ghada Sokar
Zahra Atashgahi
Mykola Pechenizkiy
D. Mocanu
25
17
0
26 Nov 2022
SNIPER Training: Single-Shot Sparse Training for Text-to-Speech
SNIPER Training: Single-Shot Sparse Training for Text-to-Speech
Perry Lam
Huayun Zhang
Nancy F. Chen
Berrak Sisman
Dorien Herremans
VLM
14
0
0
14 Nov 2022
ClassPruning: Speed Up Image Restoration Networks by Dynamic N:M Pruning
ClassPruning: Speed Up Image Restoration Networks by Dynamic N:M Pruning
Yang Zhou
Yuda Song
Hui Qian
Xin Du
VLM
28
1
0
10 Nov 2022
Efficiently Scaling Transformer Inference
Efficiently Scaling Transformer Inference
Reiner Pope
Sholto Douglas
Aakanksha Chowdhery
Jacob Devlin
James Bradbury
Anselm Levskaya
Jonathan Heek
Kefan Xiao
Shivani Agrawal
J. Dean
32
292
0
09 Nov 2022
Soft Masking for Cost-Constrained Channel Pruning
Soft Masking for Cost-Constrained Channel Pruning
Ryan Humble
Maying Shen
J. Latorre
Eric Darve1
J. Álvarez
14
13
0
04 Nov 2022
EAPruning: Evolutionary Pruning for Vision Transformers and CNNs
EAPruning: Evolutionary Pruning for Vision Transformers and CNNs
Qingyuan Li
Bo-Wen Zhang
Xiangxiang Chu
ViT
VLM
27
3
0
01 Oct 2022
Previous
123
Next