ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04626
  4. Cited By
Physics-informed neural networks with hard constraints for inverse
  design

Physics-informed neural networks with hard constraints for inverse design

9 February 2021
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
    PINN
ArXivPDFHTML

Papers citing "Physics-informed neural networks with hard constraints for inverse design"

7 / 7 papers shown
Title
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
66
0
0
25 Apr 2025
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
Leander Kurscheidt
Paolo Morettin
Roberto Sebastiani
Andrea Passerini
Antonio Vergari
44
0
0
25 Mar 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
67
1
0
15 Dec 2024
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min-Bin Lin
Kenji Kawaguchi
89
4
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
20
2
0
04 Oct 2024
Robust Biharmonic Skinning Using Geometric Fields
Robust Biharmonic Skinning Using Geometric Fields
Ana Dodik
Vincent Sitzmann
Justin Solomon
Oded Stein
3DH
34
2
0
01 Jun 2024
Hybrid thermal modeling of additive manufacturing processes using
  physics-informed neural networks for temperature prediction and parameter
  identification
Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
Shuheng Liao
Tianju Xue
Jihoon Jeong
Samantha Webster
K. Ehmann
Jian Cao
AI4CE
15
46
0
15 Jun 2022
1