ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04635
  4. Cited By
Federated Deep AUC Maximization for Heterogeneous Data with a Constant
  Communication Complexity
v1v2v3 (latest)

Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity

International Conference on Machine Learning (ICML), 2021
9 February 2021
Zhuoning Yuan
Zhishuai Guo
Yi Tian Xu
Yiming Ying
Tianbao Yang
    FedML
ArXiv (abs)PDFHTMLGithub (5★)

Papers citing "Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity"

22 / 22 papers shown
Title
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Linli Zhou
Bokun Wang
My T. Thai
Tianbao Yang
133
0
0
28 May 2025
Solving a Class of Non-Convex Minimax Optimization in Federated Learning
Solving a Class of Non-Convex Minimax Optimization in Federated LearningNeural Information Processing Systems (NeurIPS), 2023
Xidong Wu
Jianhui Sun
Zhengmian Hu
Aidong Zhang
Heng-Chiao Huang
FedML
280
18
0
05 Oct 2023
Federated Conditional Stochastic Optimization
Federated Conditional Stochastic OptimizationNeural Information Processing Systems (NeurIPS), 2023
Xidong Wu
Jianhui Sun
Zhengmian Hu
Junyi Li
Aidong Zhang
Heng-Chiao Huang
FedML
353
4
0
04 Oct 2023
Serverless Federated AUPRC Optimization for Multi-Party Collaborative
  Imbalanced Data Mining
Serverless Federated AUPRC Optimization for Multi-Party Collaborative Imbalanced Data MiningKnowledge Discovery and Data Mining (KDD), 2023
Xidong Wu
Zhengmian Hu
Jian Pei
Heng Huang
183
13
0
06 Aug 2023
Federated Compositional Deep AUC Maximization
Federated Compositional Deep AUC MaximizationNeural Information Processing Systems (NeurIPS), 2023
Xinwen Zhang
Yihang Zhang
Tianbao Yang
Richard Souvenir
Hongchang Gao
FedML
324
10
0
20 Apr 2023
An Efficient Stochastic Algorithm for Decentralized
  Nonconvex-Strongly-Concave Minimax Optimization
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax OptimizationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Le‐Yu Chen
Haishan Ye
Luo Luo
440
10
0
05 Dec 2022
Differentiated Federated Reinforcement Learning Based Traffic Offloading
  on Space-Air-Ground Integrated Networks
Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated NetworksIEEE Transactions on Mobile Computing (IEEE TMC), 2022
Yeguang Qin
Yilin Yang
Zhiqi Guo
Xin Yao
Mingde Zhao
Nei Kato
261
11
0
05 Dec 2022
Adaptive Federated Minimax Optimization with Lower Complexities
Adaptive Federated Minimax Optimization with Lower ComplexitiesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Feihu Huang
Xinrui Wang
Junyi Li
Songcan Chen
FedML
283
5
0
14 Nov 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
FeDXL: Provable Federated Learning for Deep X-Risk OptimizationInternational Conference on Machine Learning (ICML), 2022
Zhishuai Guo
Rong Jin
Jiebo Luo
Tianbao Yang
FedML
382
10
0
26 Oct 2022
SAGDA: Achieving $\mathcal{O}(ε^{-2})$ Communication Complexity
  in Federated Min-Max Learning
SAGDA: Achieving O(ε−2)\mathcal{O}(ε^{-2})O(ε−2) Communication Complexity in Federated Min-Max Learning
Haibo Yang
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
FedML
219
0
0
02 Oct 2022
Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization
Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization
Le‐Yu Chen
Luo Luo
298
11
0
11 Aug 2022
Optimizing Two-way Partial AUC with an End-to-end Framework
Optimizing Two-way Partial AUC with an End-to-end FrameworkIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Zhiyong Yang
Qianqian Xu
Shilong Bao
Yuan He
Xiaochun Cao
Qingming Huang
185
25
0
23 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Anchor Sampling for Federated Learning with Partial Client ParticipationInternational Conference on Machine Learning (ICML), 2022
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
193
21
0
13 Jun 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A SurveyACM Computing Surveys (ACM CSUR), 2022
Tianbao Yang
Yiming Ying
395
250
0
28 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms
Federated Minimax Optimization: Improved Convergence Analyses and AlgorithmsInternational Conference on Machine Learning (ICML), 2022
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
245
58
0
09 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence GuaranteeInternational Conference on Machine Learning (ICML), 2022
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
483
37
0
01 Mar 2022
Securing Federated Sensitive Topic Classification against Poisoning
  Attacks
Securing Federated Sensitive Topic Classification against Poisoning AttacksNetwork and Distributed System Security Symposium (NDSS), 2022
Tianyue Chu
Álvaro García-Recuero
Costas Iordanou
Georgios Smaragdakis
Nikolaos Laoutaris
245
15
0
31 Jan 2022
Deep AUC Maximization for Medical Image Classification: Challenges and
  Opportunities
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
Tianbao Yang
208
6
0
01 Nov 2021
CDMA: A Practical Cross-Device Federated Learning Algorithm for General
  Minimax Problems
CDMA: A Practical Cross-Device Federated Learning Algorithm for General Minimax ProblemsAAAI Conference on Artificial Intelligence (AAAI), 2021
Jiahao Xie
Chao Zhang
Zebang Shen
Weijie Liu
Hui Qian
FedML
158
2
0
29 May 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax OptimizationConference on Uncertainty in Artificial Intelligence (UAI), 2021
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
176
65
0
29 Mar 2021
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and
  Empirical Studies on Medical Image Classification
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image ClassificationIEEE International Conference on Computer Vision (ICCV), 2020
Zhuoning Yuan
Yan Yan
Milan Sonka
Tianbao Yang
AI4TSMedImOOD
231
136
0
06 Dec 2020
FedEval: A Holistic Evaluation Framework for Federated Learning
FedEval: A Holistic Evaluation Framework for Federated Learning
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
FedML
178
15
0
19 Nov 2020
1