Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04763
Cited By
k
k
k
-Anonymity in Practice: How Generalisation and Suppression Affect Machine Learning Classifiers
9 February 2021
D. Slijepcevic
Maximilian Henzl
Lukas Daniel Klausner
Tobias Dam
Peter Kieseberg
Matthias Zeppelzauer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"$k$-Anonymity in Practice: How Generalisation and Suppression Affect Machine Learning Classifiers"
6 / 6 papers shown
Title
Multi-Objective Optimization-Based Anonymization of Structured Data for Machine Learning Application
Yusi Wei
Hande Y. Benson
Joseph K. Agor
Muge Capan
28
0
0
02 Jan 2025
Synthetic Data: Revisiting the Privacy-Utility Trade-off
Fatima Jahan Sarmin
Atiquer Rahman Sarkar
Yang Wang
Noman Mohammed
32
3
0
09 Jul 2024
Privacy-Preserving Taxi-Demand Prediction Using Federated Learning
Yumeki Goto
Tomoya Matsumoto
Hamada Rizk
Naoto Yanai
Hirozumi Yamaguchi
33
6
0
14 May 2023
Comparison of machine learning models applied on anonymized data with different techniques
Judith Sáinz-Pardo Díaz
Á. García
16
5
0
12 May 2023
Energy cost and machine learning accuracy impact of k-anonymisation and synthetic data techniques
Pepijn de Reus
Ana Oprescu
Koen van Elsen
14
3
0
11 May 2023
Anonymous Bandits for Multi-User Systems
Hossein Esfandiari
Vahab Mirrokni
Jon Schneider
PICV
21
0
0
21 Oct 2022
1