ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06416
  4. Cited By
Explaining predictive models using Shapley values and non-parametric
  vine copulas

Explaining predictive models using Shapley values and non-parametric vine copulas

12 February 2021
K. Aas
T. Nagler
Martin Jullum
Anders Løland
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Explaining predictive models using Shapley values and non-parametric vine copulas"

10 / 10 papers shown
Title
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
165
0
0
02 Dec 2024
A Comparative Study of Methods for Estimating Conditional Shapley Values
  and When to Use Them
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
FAtt
85
12
0
16 May 2023
Approximation of group explainers with coalition structure using Monte
  Carlo sampling on the product space of coalitions and features
Approximation of group explainers with coalition structure using Monte Carlo sampling on the product space of coalitions and features
Konstandinos Kotsiopoulos
A. Miroshnikov
Khashayar Filom
Arjun Ravi Kannan
FAtt
97
3
0
17 Mar 2023
Shapley Curves: A Smoothing Perspective
Shapley Curves: A Smoothing Perspective
Ratmir Miftachov
Georg Keilbar
Wolfgang Karl Härdle
FAtt
95
1
0
23 Nov 2022
Algorithms to estimate Shapley value feature attributions
Algorithms to estimate Shapley value feature attributions
Hugh Chen
Ian Covert
Scott M. Lundberg
Su-In Lee
TDIFAtt
93
235
0
15 Jul 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDIFAtt
100
17
0
26 Nov 2021
groupShapley: Efficient prediction explanation with Shapley values for
  feature groups
groupShapley: Efficient prediction explanation with Shapley values for feature groups
Martin Jullum
Annabelle Redelmeier
K. Aas
TDIFAtt
80
22
0
23 Jun 2021
Accurate Shapley Values for explaining tree-based models
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDIFAtt
55
15
0
07 Jun 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
138
252
0
21 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
138
33
0
06 Nov 2020
1