ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06862
  4. Cited By
Wasserstein Proximal of GANs

Wasserstein Proximal of GANs

13 February 2021
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
    GAN
ArXivPDFHTML

Papers citing "Wasserstein Proximal of GANs"

20 / 20 papers shown
Title
Wasserstein proximal operators describe score-based generative models
  and resolve memorization
Wasserstein proximal operators describe score-based generative models and resolve memorization
Benjamin J. Zhang
Siting Liu
Wuchen Li
M. Katsoulakis
Stanley J. Osher
DiffM
32
8
0
09 Feb 2024
Scalable Wasserstein Gradient Flow for Generative Modeling through
  Unbalanced Optimal Transport
Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myungjoo Kang
41
6
0
08 Feb 2024
Adaptive Annealed Importance Sampling with Constant Rate Progress
Adaptive Annealed Importance Sampling with Constant Rate Progress
Shirin Goshtasbpour
Victor Cohen
F. Pérez-Cruz
19
7
0
27 Jun 2023
Neural FIM for learning Fisher Information Metrics from point cloud data
Neural FIM for learning Fisher Information Metrics from point cloud data
O. Fasina
Guilluame Huguet
Alexander Tong
Yanlei Zhang
Guy Wolf
Maximilian Nickel
Ian M. Adelstein
Smita Krishnaswamy
30
3
0
01 Jun 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
13
4
0
25 Feb 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
27
13
0
27 Jan 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
24
19
0
25 Nov 2022
Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning
Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning
Keaton Hamm
Nick Henscheid
Shujie Kang
16
16
0
13 Apr 2022
Provably convergent quasistatic dynamics for mean-field two-player
  zero-sum games
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
27
11
0
15 Feb 2022
Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based
  Optimization Problems
Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based Optimization Problems
L. Nurbekyan
Wanzhou Lei
Yunbo Yang
15
12
0
13 Feb 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
29
21
0
21 Oct 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
Learning High Dimensional Wasserstein Geodesics
Learning High Dimensional Wasserstein Geodesics
Shu Liu
Shaojun Ma
Yongxin Chen
H. Zha
Haomin Zhou
17
8
0
05 Feb 2021
Alternating the Population and Control Neural Networks to Solve
  High-Dimensional Stochastic Mean-Field Games
Alternating the Population and Control Neural Networks to Solve High-Dimensional Stochastic Mean-Field Games
A. Lin
Samy Wu Fung
Wuchen Li
L. Nurbekyan
Stanley J. Osher
16
71
0
24 Feb 2020
Wasserstein information matrix
Wasserstein information matrix
Wuchen Li
Jiaxi Zhao
16
27
0
24 Oct 2019
Wasserstein Diffusion Tikhonov Regularization
Wasserstein Diffusion Tikhonov Regularization
A. Lin
Yonatan Dukler
Wuchen Li
Guido Montúfar
13
2
0
15 Sep 2019
Accelerated Information Gradient flow
Accelerated Information Gradient flow
Yifei Wang
Wuchen Li
17
55
0
04 Sep 2019
2-Wasserstein Approximation via Restricted Convex Potentials with
  Application to Improved Training for GANs
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
24
42
0
19 Feb 2019
Probability Functional Descent: A Unifying Perspective on GANs,
  Variational Inference, and Reinforcement Learning
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
11
26
0
30 Jan 2019
1