Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2102.07314
Cited By
The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods
International Conference on Learning Representations (ICLR), 2021
15 February 2021
Wei Tao
Sheng Long
Gao-wei Wu
Qing Tao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods"
5 / 5 papers shown
Title
Modified Step Size for Enhanced Stochastic Gradient Descent: Convergence and Experiments
M. S. Shamaee
S. F. Hafshejani
108
1
0
03 Sep 2023
A Unified Momentum-based Paradigm of Decentralized SGD for Non-Convex Models and Heterogeneous Data
Haizhou Du
Chengdong Ni
88
3
0
01 Mar 2023
Adapting Step-size: A Unified Perspective to Analyze and Improve Gradient-based Methods for Adversarial Attacks
Wei Tao
Lei Bao
Long Sheng
Gao-wei Wu
Qing Tao
AAML
159
2
0
27 Jan 2023
Does Momentum Change the Implicit Regularization on Separable Data?
Neural Information Processing Systems (NeurIPS), 2021
Bohan Wang
Qi Meng
Huishuai Zhang
Tian Ding
Wei Chen
Zhirui Ma
Tie-Yan Liu
194
23
0
08 Oct 2021
On the Last Iterate Convergence of Momentum Methods
International Conference on Algorithmic Learning Theory (ALT), 2021
Xiaoyun Li
Mingrui Liu
Francesco Orabona
258
12
0
13 Feb 2021
1