ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08773
  4. Cited By
Predicting Lexical Complexity in English Texts: The Complex 2.0 Dataset
v1v2 (latest)

Predicting Lexical Complexity in English Texts: The Complex 2.0 Dataset

Language Resources and Evaluation (LRE), 2021
17 February 2021
Matthew Shardlow
R. Evans
Marcos Zampieri
ArXiv (abs)PDFHTML

Papers citing "Predicting Lexical Complexity in English Texts: The Complex 2.0 Dataset"

10 / 10 papers shown
Using Letter Positional Probabilities to Assess Word Complexity
Using Letter Positional Probabilities to Assess Word Complexity
Michael Dalvean
228
1
0
11 Apr 2024
MultiLS: A Multi-task Lexical Simplification Framework
MultiLS: A Multi-task Lexical Simplification Framework
Kai North
Tharindu Ranasinghe
Matthew Shardlow
Marcos Zampieri
156
8
0
22 Feb 2024
Japanese Lexical Complexity for Non-Native Readers: A New Dataset
Japanese Lexical Complexity for Non-Native Readers: A New DatasetWorkshop on Innovative Use of NLP for Building Educational Applications (UNBEA), 2023
Yusuke Ide
Masato Mita
Adam Nohejl
Hiroki Ouchi
Taro Watanabe
189
8
0
30 Jun 2023
Lexical Complexity Prediction: An Overview
Lexical Complexity Prediction: An OverviewACM Computing Surveys (ACM CSUR), 2022
Kai North
Marcos Zampieri
Matthew Shardlow
163
28
0
08 Mar 2023
Language Variety Identification with True Labels
Language Variety Identification with True LabelsInternational Conference on Language Resources and Evaluation (LREC), 2023
Marcos Zampieri
Kai North
T. Jauhiainen
Mariano Felice
N. Kumari
N. Nair
Y. Bangera
131
26
0
02 Mar 2023
Domain Adaptation in Multilingual and Multi-Domain Monolingual Settings
  for Complex Word Identification
Domain Adaptation in Multilingual and Multi-Domain Monolingual Settings for Complex Word IdentificationAnnual Meeting of the Association for Computational Linguistics (ACL), 2022
George-Eduard Zaharia
Razvan-Alexandru Smadu
Dumitru-Clementin Cercel
M. Dascalu
274
4
0
15 May 2022
LAST at SemEval-2021 Task 1: Improving Multi-Word Complexity Prediction
  Using Bigram Association Measures
LAST at SemEval-2021 Task 1: Improving Multi-Word Complexity Prediction Using Bigram Association MeasuresInternational Workshop on Semantic Evaluation (SemEval), 2021
Yves Bestgen
122
4
0
20 May 2021
LCP-RIT at SemEval-2021 Task 1: Exploring Linguistic Features for
  Lexical Complexity Prediction
LCP-RIT at SemEval-2021 Task 1: Exploring Linguistic Features for Lexical Complexity PredictionInternational Workshop on Semantic Evaluation (SemEval), 2021
Abhinandan Desai
Kai North
Marcos Zampieri
Christopher Homan
234
15
0
18 May 2021
OCHADAI-KYOTO at SemEval-2021 Task 1: Enhancing Model Generalization and
  Robustness for Lexical Complexity Prediction
OCHADAI-KYOTO at SemEval-2021 Task 1: Enhancing Model Generalization and Robustness for Lexical Complexity PredictionInternational Workshop on Semantic Evaluation (SemEval), 2021
Y. Taya
L. Pereira
Fei Cheng
Ichiro Kobayashi
271
1
0
12 May 2021
UPB at SemEval-2021 Task 1: Combining Deep Learning and Hand-Crafted
  Features for Lexical Complexity Prediction
UPB at SemEval-2021 Task 1: Combining Deep Learning and Hand-Crafted Features for Lexical Complexity PredictionInternational Workshop on Semantic Evaluation (SemEval), 2021
George-Eduard Zaharia
Dumitru-Clementin Cercel
M. Dascalu
180
8
0
14 Apr 2021
1
Page 1 of 1