ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08903
  4. Cited By
Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov
  Games

Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games

17 February 2021
Yulai Zhao
Yuandong Tian
Jason D. Lee
S. Du
    OffRL
ArXivPDFHTML

Papers citing "Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games"

3 / 3 papers shown
Title
Differentiable Arbitrating in Zero-sum Markov Games
Differentiable Arbitrating in Zero-sum Markov Games
Jing Wang
Meichen Song
Feng Gao
Boyi Liu
Zhaoran Wang
Yi Wu
22
2
0
20 Feb 2023
Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
  Markov Games
Faster Last-iterate Convergence of Policy Optimization in Zero-Sum Markov Games
Shicong Cen
Yuejie Chi
S. Du
Lin Xiao
41
35
0
03 Oct 2022
Independent Policy Gradient Methods for Competitive Reinforcement
  Learning
Independent Policy Gradient Methods for Competitive Reinforcement Learning
C. Daskalakis
Dylan J. Foster
Noah Golowich
51
158
0
11 Jan 2021
1