ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.09883
  4. Cited By
SLPC: a VRNN-based approach for stochastic lidar prediction and
  completion in autonomous driving

SLPC: a VRNN-based approach for stochastic lidar prediction and completion in autonomous driving

European Signal Processing Conference (EUSIPCO), 2021
19 February 2021
George Eskandar
Alexander Braun
M. Meinke
Karim Armanious
Bin Yang
    3DV
ArXiv (abs)PDFHTML

Papers citing "SLPC: a VRNN-based approach for stochastic lidar prediction and completion in autonomous driving"

3 / 3 papers shown
Enhancing Vehicle Environmental Awareness via Federated Learning and
  Automatic Labeling
Enhancing Vehicle Environmental Awareness via Federated Learning and Automatic Labeling
Chih-Yu Lin
Jin-Wei Liang
159
2
0
23 Aug 2024
Temporal Lidar Depth Completion
Temporal Lidar Depth Completion
Pietari Kaskela
Philipp Fischer
Timo Roman
3DV
269
0
0
17 Jun 2024
HALS: A Height-Aware Lidar Super-Resolution Framework for Autonomous
  Driving
HALS: A Height-Aware Lidar Super-Resolution Framework for Autonomous Driving
George Eskandar
Sanjeev Sudarsan
Karim Guirguis
Janaranjani Palaniswamy
Bharath Somashekar
Bin Yang
260
9
0
08 Feb 2022
1