ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10867
  4. Cited By
Linear unit-tests for invariance discovery

Linear unit-tests for invariance discovery

22 February 2021
Benjamin Aubin
A. Slowik
Martín Arjovsky
Léon Bottou
David Lopez-Paz
    OOD
ArXivPDFHTML

Papers citing "Linear unit-tests for invariance discovery"

7 / 7 papers shown
Title
Towards a Better Evaluation of Out-of-Domain Generalization
Towards a Better Evaluation of Out-of-Domain Generalization
Duhun Hwang
Suhyun Kang
Moonjung Eo
Jimyeong Kim
Wonjong Rhee
56
0
0
30 May 2024
Spuriosity Rankings for Free: A Simple Framework for Last Layer
  Retraining Based on Object Detection
Spuriosity Rankings for Free: A Simple Framework for Last Layer Retraining Based on Object Detection
Mohammad Azizmalayeri
Reza Abbasi
Amir Hosein Haji Mohammad Rezaie
Reihaneh Zohrabi
Mahdi Amiri
M. T. Manzuri
M. Rohban
19
0
0
31 Oct 2023
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
34
314
0
06 Apr 2022
Conditional entropy minimization principle for learning domain invariant
  representation features
Conditional entropy minimization principle for learning domain invariant representation features
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
27
7
0
25 Jan 2022
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
49
516
0
31 Aug 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
26
32
0
18 Jun 2021
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
31
65
0
04 Aug 2020
1