ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11504
  4. Cited By
Equivariant neural networks for inverse problems

Equivariant neural networks for inverse problems

23 February 2021
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
    MedIm
    AI4CE
ArXivPDFHTML

Papers citing "Equivariant neural networks for inverse problems"

9 / 9 papers shown
Title
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
41
1
0
03 Oct 2024
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
58
0
0
10 Jun 2024
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
41
61
0
11 Nov 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient
  Accelerated MRI Reconstruction
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
14
7
0
21 Apr 2022
Equivariance Regularization for Image Reconstruction
Equivariance Regularization for Image Reconstruction
Junqi Tang
19
2
0
10 Feb 2022
Learning Hamiltonians of constrained mechanical systems
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
41
17
0
31 Jan 2022
Robust Equivariant Imaging: a fully unsupervised framework for learning
  to image from noisy and partial measurements
Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements
Dongdong Chen
Julián Tachella
Mike E. Davies
OOD
23
59
0
25 Nov 2021
Stochastic Primal-Dual Deep Unrolling
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
22
4
0
19 Oct 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1