Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.11673
Cited By
v1
v2
v3 (latest)
Measuring Data Leakage in Machine-Learning Models with Fisher Information
23 February 2021
Awni Y. Hannun
Chuan Guo
Laurens van der Maaten
FedML
MIACV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Measuring Data Leakage in Machine-Learning Models with Fisher Information"
26 / 26 papers shown
Title
Breaking the Gaussian Barrier: Residual-PAC Privacy for Automatic Privatization
Tao Zhang
Yevgeniy Vorobeychik
28
0
0
06 Jun 2025
Practical Bayes-Optimal Membership Inference Attacks
Marcus Lassila
Johan Ostman
K. Ngo
Alexandre Graell i Amat
30
0
0
30 May 2025
Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI
Meghali Nandi
Arash Shaghaghi
Nazatul Haque Sultan
Gustavo Batista
Raymond K. Zhao
Sanjay Jha
AAML
172
0
0
16 May 2025
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
199
0
0
14 Apr 2025
SimClone: Detecting Tabular Data Clones using Value Similarity
Xu Yang
Gopi Krishnan Rajbahadur
Dayi Lin
Shaowei Wang
Zhen Ming
Jiang
70
1
0
24 Jun 2024
Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds
Kamalika Chaudhuri
Chuan Guo
Laurens van der Maaten
Saeed Mahloujifar
M. Tygert
44
1
0
03 Apr 2024
Fisher Mask Nodes for Language Model Merging
Thennal D K
Ganesh Nathan
Suchithra M S
MoMe
AI4CE
97
5
0
14 Mar 2024
Privacy Amplification for the Gaussian Mechanism via Bounded Support
Shengyuan Hu
Saeed Mahloujifar
Virginia Smith
Kamalika Chaudhuri
Chuan Guo
FedML
72
1
0
07 Mar 2024
Defending Against Data Reconstruction Attacks in Federated Learning: An Information Theory Approach
Qi Tan
Qi Li
Yi Zhao
Zhuotao Liu
Xiaobing Guo
Ke Xu
FedML
78
2
0
02 Mar 2024
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
92
1
0
06 Nov 2023
SparseLock: Securing Neural Network Models in Deep Learning Accelerators
Nivedita Shrivastava
S. Sarangi
AAML
99
1
0
05 Nov 2023
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
168
2
0
20 Oct 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
104
6
0
22 Sep 2023
Automating Wood Species Detection and Classification in Microscopic Images of Fibrous Materials with Deep Learning
Lars Nieradzik
Jördis Sieburg-Rockel
Stephanie Helmling
J. Keuper
Thomas Weibel
Andrea Olbrich
Henrike Stephani
60
6
0
18 Jul 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
91
23
0
29 May 2023
Bounding the Invertibility of Privacy-preserving Instance Encoding using Fisher Information
Kiwan Maeng
Chuan Guo
Sanjay Kariyappa
G. E. Suh
75
8
0
06 May 2023
How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
Tamara T. Mueller
Stefan Kolek
F. Jungmann
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Daniel Rueckert
Georgios Kaissis
80
3
0
18 Nov 2022
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
82
7
0
08 Nov 2022
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Chuan Guo
Alexandre Sablayrolles
Maziar Sanjabi
FedML
69
17
0
24 Oct 2022
PAC Privacy: Automatic Privacy Measurement and Control of Data Processing
Hanshen Xiao
S. Devadas
104
12
0
07 Oct 2022
Measuring and Controlling Split Layer Privacy Leakage Using Fisher Information
Kiwan Maeng
Chuan Guo
Sanjay Kariyappa
Ed Suh
FedML
92
6
0
21 Sep 2022
Inferring Sensitive Attributes from Model Explanations
Vasisht Duddu
A. Boutet
MIACV
SILM
78
17
0
21 Aug 2022
Protecting Data from all Parties: Combining FHE and DP in Federated Learning
Arnaud Grivet Sébert
Renaud Sirdey
Oana Stan
Cédric Gouy-Pailler
FedML
35
0
0
09 May 2022
Forecast Evaluation for Data Scientists: Common Pitfalls and Best Practices
Hansika Hewamalage
Klaus Ackermann
Christoph Bergmeir
AI4TS
150
97
0
21 Mar 2022
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
Laurens van der Maaten
168
55
0
28 Jan 2022
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
74
13
0
04 Dec 2021
1