Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.11830
Cited By
Solving high-dimensional parabolic PDEs using the tensor train format
23 February 2021
Lorenz Richter
Leon Sallandt
Nikolas Nusken
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Solving high-dimensional parabolic PDEs using the tensor train format"
8 / 8 papers shown
Title
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Sidharth S. Menon
Ameya D. Jagtap
PINN
219
0
0
06 May 2025
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Sumanth Kumar Boya
Deepak Subramani
AI4CE
104
0
0
12 Dec 2024
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
53
4
0
10 Feb 2023
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
38
27
0
07 Dec 2021
A block-sparse Tensor Train Format for sample-efficient high-dimensional Polynomial Regression
M. Götte
R. Schneider
Philipp Trunschke
18
7
0
29 Apr 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
35
146
0
22 Dec 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
38
105
0
11 May 2020
1