206
110

Simple multi-dataset detection

Abstract

How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Experiments show our learned taxonomy outperforms a expert-designed taxonomy in all datasets. Our multi-dataset detector performs as well as dataset-specific models on each training domain, and can generalize to new unseen dataset without fine-tuning on them. Code is available at https://github.com/xingyizhou/UniDet.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.