ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13219
  4. Cited By
Learning with invariances in random features and kernel models

Learning with invariances in random features and kernel models

25 February 2021
Song Mei
Theodor Misiakiewicz
Andrea Montanari
    OOD
ArXivPDFHTML

Papers citing "Learning with invariances in random features and kernel models"

11 / 11 papers shown
Title
Learning with Exact Invariances in Polynomial Time
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
P. Jaillet
58
0
0
27 Feb 2025
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
22
1
0
03 Oct 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
21
2
0
30 May 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and
  Diffusion in Generative Hierarchical Models
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
21
11
0
29 Apr 2024
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Yuxiao Wen
Arthur Jacot
35
6
0
12 Feb 2024
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
Muthuraman Chidambaram
Rong Ge
AAML
11
0
0
10 Feb 2024
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
16
22
0
27 May 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
17
5
0
23 Mar 2023
Strong inductive biases provably prevent harmless interpolation
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
12
9
0
18 Jan 2023
Sample Efficiency of Data Augmentation Consistency Regularization
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
8
17
0
24 Feb 2022
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
11
130
0
11 Jun 2021
1