ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13515
  4. Cited By
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

24 February 2021
Victor Campos
Pablo Sprechmann
S. Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
    OffRL
    OnRL
ArXivPDFHTML

Papers citing "Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning"

9 / 9 papers shown
Title
Fine-Tuning without Performance Degradation
Fine-Tuning without Performance Degradation
Han Wang
Adam White
Martha White
OnRL
119
0
0
01 May 2025
Augmenting Unsupervised Reinforcement Learning with Self-Reference
Augmenting Unsupervised Reinforcement Learning with Self-Reference
Andrew Zhao
Erle Zhu
Rui Lu
Matthieu Lin
Yong-Jin Liu
Gao Huang
SSL
19
1
0
16 Nov 2023
Investigating the role of model-based learning in exploration and
  transfer
Investigating the role of model-based learning in exploration and transfer
Jacob Walker
Eszter Vértes
Yazhe Li
Gabriel Dulac-Arnold
Ankesh Anand
T. Weber
Jessica B. Hamrick
OffRL
31
6
0
08 Feb 2023
Policy Expansion for Bridging Offline-to-Online Reinforcement Learning
Policy Expansion for Bridging Offline-to-Online Reinforcement Learning
Haichao Zhang
Weiwen Xu
Haonan Yu
CLL
OffRL
OnRL
30
62
0
02 Feb 2023
SkillS: Adaptive Skill Sequencing for Efficient Temporally-Extended
  Exploration
SkillS: Adaptive Skill Sequencing for Efficient Temporally-Extended Exploration
Giulia Vezzani
Dhruva Tirumala
Markus Wulfmeier
Dushyant Rao
A. Abdolmaleki
...
Tim Hertweck
Thomas Lampe
Fereshteh Sadeghi
N. Heess
Martin Riedmiller
OffRL
28
6
0
24 Nov 2022
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot
  Learning
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot Learning
Yang Shu
Zhangjie Cao
Jing Gao
Jianmin Wang
Philip S. Yu
Mingsheng Long
30
10
0
14 Oct 2021
Decoupling Representation Learning from Reinforcement Learning
Decoupling Representation Learning from Reinforcement Learning
Adam Stooke
Kimin Lee
Pieter Abbeel
Michael Laskin
SSL
DRL
280
339
0
14 Sep 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,677
0
09 Mar 2017
1