Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.03452
Cited By
FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization
5 March 2021
Quoc Tran-Dinh
Nhan H. Pham
Dzung Phan
Lam M. Nguyen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization"
8 / 8 papers shown
Title
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
89
6
0
28 Jan 2025
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
Yan Sun
Li Shen
Dacheng Tao
FedML
25
0
0
27 Sep 2024
Distributed Event-Based Learning via ADMM
Güner Dilsad Er
Sebastian Trimpe
Michael Muehlebach
FedML
34
2
0
17 May 2024
Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape
Yan Sun
Li Shen
Shi-Yong Chen
Liang Ding
Dacheng Tao
FedML
27
33
0
19 May 2023
DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime
Jongho Park
Jinchao Xu
FedML
47
1
0
17 May 2023
FedSysID: A Federated Approach to Sample-Efficient System Identification
Han Wang
Leonardo F. Toso
James Anderson
FedML
24
17
0
25 Nov 2022
Clustered Federated Learning based on Nonconvex Pairwise Fusion
Xue Yu
Ziyi Liu
Wu Wang
Yifan Sun
FedML
32
7
0
08 Nov 2022
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
786
0
15 Feb 2021
1