ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.06124
  4. Cited By
Semantically Constrained Memory Allocation (SCMA) for Embedding in
  Efficient Recommendation Systems

Semantically Constrained Memory Allocation (SCMA) for Embedding in Efficient Recommendation Systems

24 February 2021
Aditya Desai
Yanzhou Pan
K. Sun
Li Chou
Anshumali Shrivastava
ArXiv (abs)PDFHTML

Papers citing "Semantically Constrained Memory Allocation (SCMA) for Embedding in Efficient Recommendation Systems"

6 / 6 papers shown
Title
Lightweight Embeddings with Graph Rewiring for Collaborative Filtering
Lightweight Embeddings with Graph Rewiring for Collaborative Filtering
Xurong Liang
Tong Chen
Wei Yuan
Hongzhi Yin
37
0
0
25 May 2025
The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems
The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems
Chanwoo Choi
Jinsoo Kim
Sukmin Cho
Soyeong Jeong
Buru Chang
129
2
0
28 Feb 2025
Saturn: An Optimized Data System for Large Model Deep Learning Workloads
Saturn: An Optimized Data System for Large Model Deep Learning Workloads
Kabir Nagrecha
Arun Kumar
110
6
0
03 Sep 2023
Mem-Rec: Memory Efficient Recommendation System using Alternative
  Representation
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Gopu Krishna Jha
Anthony Thomas
Nilesh Jain
Sameh Gobriel
Tajana Rosing
Ravi Iyer
86
2
0
12 May 2023
Streaming Encoding Algorithms for Scalable Hyperdimensional Computing
Streaming Encoding Algorithms for Scalable Hyperdimensional Computing
Anthony Thomas
Behnam Khaleghi
Gopi Krishna Jha
S. Dasgupta
N. Himayat
Ravi Iyer
Nilesh Jain
Tajana Rosing
91
6
0
20 Sep 2022
Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf
  DLRM Model : 1000$\times$ Compression and 3.1$\times$ Faster Inference
Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf DLRM Model : 1000×\times× Compression and 3.1×\times× Faster Inference
Aditya Desai
Li Chou
Anshumali Shrivastava
AI4CE
61
6
0
04 Aug 2021
1