ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.06701
  4. Cited By
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial
  Attacks

Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks

10 March 2021
Anna Kuzina
Max Welling
Jakub M. Tomczak
    AAML
    DRL
ArXivPDFHTML

Papers citing "Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks"

6 / 6 papers shown
Title
ALMA: Aggregated Lipschitz Maximization Attack on Auto-encoders
ALMA: Aggregated Lipschitz Maximization Attack on Auto-encoders
Chethan Krishnamurthy Ramanaik
Arjun Roy
Eirini Ntoutsi
AAML
27
0
0
06 May 2025
On the Adversarial Robustness of Generative Autoencoders in the Latent
  Space
On the Adversarial Robustness of Generative Autoencoders in the Latent Space
Mingfei Lu
Badong Chen
AAML
DRL
14
3
0
05 Jul 2023
Adversarial Robustness in Unsupervised Machine Learning: A Systematic
  Review
Adversarial Robustness in Unsupervised Machine Learning: A Systematic Review
Mathias Lundteigen Mohus
Jinyue Li
AAML
14
1
0
01 Jun 2023
Adversarial robustness of VAEs through the lens of local geometry
Adversarial robustness of VAEs through the lens of local geometry
Asif Khan
Amos Storkey
AAML
DRL
11
2
0
08 Aug 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
19
12
0
18 Mar 2022
A Closer Look at the Adversarial Robustness of Information Bottleneck
  Models
A Closer Look at the Adversarial Robustness of Information Bottleneck Models
I. Korshunova
David Stutz
Alexander A. Alemi
Olivia Wiles
Sven Gowal
17
3
0
12 Jul 2021
1