ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09404
  4. Cited By
Collapsible Linear Blocks for Super-Efficient Super Resolution

Collapsible Linear Blocks for Super-Efficient Super Resolution

17 March 2021
Kartikeya Bhardwaj
M. Milosavljevic
Liam OÑeil
Dibakar Gope
Ramon Matas Navarro
A. Chalfin
Naveen Suda
Lingchuan Meng
Danny Loh
    SupR
ArXivPDFHTML

Papers citing "Collapsible Linear Blocks for Super-Efficient Super Resolution"

11 / 11 papers shown
Title
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
102
0
0
04 Feb 2025
Super Efficient Neural Network for Compression Artifacts Reduction and
  Super Resolution
Super Efficient Neural Network for Compression Artifacts Reduction and Super Resolution
Wen Ma
Qiuwen Lou
Arman Kazemi
Julian Faraone
Tariq Afzal
SupR
28
0
0
26 Jan 2024
Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs,
  Mobile AI & AIM 2022 challenge: Report
Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Andrey D. Ignatov
Radu Timofte
Maurizio Denna
Abdelbadie Younes
Ganzorig Gankhuyag
...
Jing Liu
Garas Gendy
Nabil Sabor
J. Hou
Guanghui He
SupR
MQ
18
31
0
07 Nov 2022
Utilizing Excess Resources in Training Neural Networks
Utilizing Excess Resources in Training Neural Networks
Amit Henig
Raja Giryes
29
0
0
12 Jul 2022
RepSR: Training Efficient VGG-style Super-Resolution Networks with
  Structural Re-Parameterization and Batch Normalization
RepSR: Training Efficient VGG-style Super-Resolution Networks with Structural Re-Parameterization and Batch Normalization
Xintao Wang
Chao Dong
Ying Shan
22
48
0
11 May 2022
UDC: Unified DNAS for Compressible TinyML Models
UDC: Unified DNAS for Compressible TinyML Models
Igor Fedorov
Ramon Matas
Hokchhay Tann
Chu Zhou
Matthew Mattina
P. Whatmough
AI4CE
21
13
0
15 Jan 2022
GhostSR: Learning Ghost Features for Efficient Image Super-Resolution
GhostSR: Learning Ghost Features for Efficient Image Super-Resolution
Ying Nie
Kai Han
Zhenhua Liu
Chunjing Xu
Yunhe Wang
OOD
35
22
0
21 Jan 2021
SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices
SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices
Xin Liu
Yuang Li
Josh Fromm
Yuntao wang
Ziheng Jiang
Alex Mariakakis
Shwetak N. Patel
SupR
21
10
0
20 Jan 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
X. Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian-jun Sun
117
1,544
0
11 Jan 2021
Hierarchical Neural Architecture Search for Single Image
  Super-Resolution
Hierarchical Neural Architecture Search for Single Image Super-Resolution
Yong Guo
Yongsheng Luo
Zhenhao He
Jin Huang
Jian Chen
SupR
54
49
0
10 Mar 2020
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
190
5,163
0
16 Sep 2016
1