Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.10182
Cited By
Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms
18 March 2021
M. Holden
Marcelo Pereyra
K. Zygalakis
MedIm
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms"
16 / 16 papers shown
Title
Hypothesis Testing in Imaging Inverse Problems
Yiming Xi
K. Zygalakis
Marcelo Pereyra
52
0
0
28 May 2025
Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning
P. Milanfar
M. Delbracio
AI4CE
140
11
0
10 Sep 2024
Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
Remi Laumont
Yiqiu Dong
Martin Skovgaard Andersen
50
1
0
24 Jun 2024
Do Bayesian imaging methods report trustworthy probabilities?
David Y. W. Thong
Charlesquin Kemajou Mbakam
Marcelo Pereyra
UQCV
82
3
0
13 May 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
95
1
0
08 Apr 2024
Regularization by denoising: Bayesian model and Langevin-within-split Gibbs sampling
Elhadji C. Faye
Mame Diarra Fall
N. Dobigeon
81
4
0
19 Feb 2024
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
60
0
0
21 Dec 2023
Variational Bayes image restoration with compressive autoencoders
Maud Biquard
Marie Chabert
Thomas Oberlin
62
2
0
29 Nov 2023
Equivariant Bootstrapping for Uncertainty Quantification in Imaging Inverse Problems
Julian Tachella
Marcelo Pereyra
UQCV
71
8
0
18 Oct 2023
Enhancing Electrical Impedance Tomography reconstruction using Learned Half-Quadratic Splitting Networks with Anderson Acceleration
Guixian Xu
Huihui Wang
Qingping Zhou
68
3
0
16 Apr 2023
Inverse problem regularization with hierarchical variational autoencoders
Jean Prost
Antoine Houdard
Andrés Almansa
Nicolas Papadakis
103
6
0
20 Mar 2023
Learned reconstruction methods with convergence guarantees
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
87
51
0
11 Jun 2022
Efficient Bayesian computation for low-photon imaging problems
Savvas Melidonis
P. Dobson
Y. Altmann
Marcelo Pereyra
K. Zygalakis
44
12
0
10 Jun 2022
Bayesian Inversion for Nonlinear Imaging Models using Deep Generative Priors
Pakshal Bohra
Thanh-an Michel Pham
Jonathan Dong
M. Unser
MedIm
92
11
0
18 Mar 2022
Generative models and Bayesian inversion using Laplace approximation
M. Marschall
G. Wübbeler
F. Schmähling
Clemens Elster
52
1
0
15 Mar 2022
Advantage of Machine Learning over Maximum Likelihood in Limited-Angle Low-Photon X-Ray Tomography
Zhen Guo
J. Song
George Barbastathis
M. Glinsky
C. Vaughan
K. Larson
B. Alpert
Z. Levine
54
1
0
15 Nov 2021
1