Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.11489
Cited By
UCB-based Algorithms for Multinomial Logistic Regression Bandits
21 March 2021
Sanae Amani
Christos Thrampoulidis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"UCB-based Algorithms for Multinomial Logistic Regression Bandits"
9 / 9 papers shown
Title
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Long-Fei Li
Yu-Jie Zhang
Peng Zhao
Zhi-Hua Zhou
101
4
0
17 Jan 2025
Nearly Minimax Optimal Regret for Multinomial Logistic Bandit
Joongkyu Lee
Min-hwan Oh
44
6
0
16 May 2024
Exponentially Convergent Algorithms for Supervised Matrix Factorization
Joowon Lee
Hanbaek Lyu
Weixin Yao
11
1
0
18 Nov 2023
Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
41
12
0
28 Oct 2023
Ranking with Popularity Bias: User Welfare under Self-Amplification Dynamics
Guy Tennenholtz
Martin Mladenov
Nadav Merlis
Robert L. Axtell
Craig Boutilier
6
0
0
24 May 2023
Reinforcement Learning with History-Dependent Dynamic Contexts
Guy Tennenholtz
Nadav Merlis
Lior Shani
Martin Mladenov
Craig Boutilier
AI4CE
16
6
0
04 Feb 2023
Supervised Dictionary Learning with Auxiliary Covariates
Joo-Hyun Lee
Hanbaek Lyu
W. Yao
22
1
0
14 Jun 2022
A Tractable Online Learning Algorithm for the Multinomial Logit Contextual Bandit
Priyank Agrawal
Theja Tulabandhula
Vashist Avadhanula
23
12
0
28 Nov 2020
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Marc Abeille
Louis Faury
Clément Calauzènes
96
37
0
23 Oct 2020
1