ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.11695
  4. Cited By
Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
  data using 3D Convolutional Neural Networks

Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks

22 March 2021
L. Fisch
J. Ernsting
N. Winter
V. Holstein
Ramona Leenings
Marie Beisemann
K. Sarink
D. Emden
N. Opel
R. Redlich
J. Repple
D. Grotegerd
S. Meinert
Niklas Wulms
Heike Minnerup
J. Hirsch
Thoralf Niendorf
B. Endemann
F. Bamberg
Thomas Kroncke
A. Peters
Robin Bülow
H. Völzke
O. Stackelberg
R. Sowade
L. Umutlu
B. Schmidt
S. Caspers
German National Cohort Study Center Consortium
H. Kugel
B. Baune
T. Kircher
Benjamin Risse
U. Dannlowski
Klaus Berger
Tim Hahn
    MedIm
ArXivPDFHTML

Papers citing "Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks"

1 / 1 papers shown
Title
A disciplined approach to neural network hyper-parameters: Part 1 --
  learning rate, batch size, momentum, and weight decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
191
1,019
0
26 Mar 2018
1