Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.12531
Cited By
CLIP: Cheap Lipschitz Training of Neural Networks
23 March 2021
Leon Bungert
René Raab
Tim Roith
Leo Schwinn
Daniel Tenbrinck
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CLIP: Cheap Lipschitz Training of Neural Networks"
23 / 23 papers shown
Title
Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Jyothi Rikhab Chand
M. Jacob
DiffM
41
0
0
21 Mar 2025
A Tunable Despeckling Neural Network Stabilized via Diffusion Equation
Yi Ran
Zhichang Guo
Jia Li
Yao Li
Martin Burger
Boying Wu
DiffM
61
0
0
24 Nov 2024
Invertible ResNets for Inverse Imaging Problems: Competitive Performance with Provable Regularization Properties
Clemens Arndt
Judith Nickel
31
0
0
20 Sep 2024
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
32
0
0
24 May 2024
Your Network May Need to Be Rewritten: Network Adversarial Based on High-Dimensional Function Graph Decomposition
Xiaoyan Su
Yinghao Zhu
Run Li
AAML
19
0
0
04 May 2024
Soft Prompt Threats: Attacking Safety Alignment and Unlearning in Open-Source LLMs through the Embedding Space
Leo Schwinn
David Dobre
Sophie Xhonneux
Gauthier Gidel
Stephan Gunnemann
AAML
49
36
0
14 Feb 2024
Local monotone operator learning using non-monotone operators: MnM-MOL
Maneesh John
Jyothi Rikabh Chand
Mathews Jacob
16
1
0
01 Dec 2023
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
25
7
0
17 May 2023
Accelerated parallel MRI using memory efficient and robust monotone operator learning (MOL)
Aniket Pramanik
M. Jacob
19
2
0
03 Apr 2023
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Grigory Khromov
Sidak Pal Singh
24
7
0
21 Feb 2023
Plug-and-Play Deep Energy Model for Inverse problems
Jyothi Rikabh Chand
M. Jacob
14
0
0
15 Feb 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Learning Globally Smooth Functions on Manifolds
J. Cerviño
Luiz F. O. Chamon
B. Haeffele
René Vidal
Alejandro Ribeiro
27
5
0
01 Oct 2022
Memory-efficient model-based deep learning with convergence and robustness guarantees
Aniket Pramanik
M. Zimmerman
M. Jacob
3DV
11
13
0
06 Jun 2022
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
Leo Schwinn
Leon Bungert
A. Nguyen
René Raab
Falk Pulsmeyer
Doina Precup
Björn Eskofier
Dario Zanca
OOD
42
12
0
19 May 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
19
15
0
13 Apr 2022
A Quantitative Geometric Approach to Neural-Network Smoothness
Z. Wang
Gautam Prakriya
S. Jha
35
13
0
02 Mar 2022
The Geometry of Adversarial Training in Binary Classification
Leon Bungert
Nicolas García Trillos
Ryan W. Murray
AAML
20
22
0
26 Nov 2021
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
19
4
0
31 Aug 2021
Connections between Numerical Algorithms for PDEs and Neural Networks
Tobias Alt
Karl Schrader
M. Augustin
Pascal Peter
Joachim Weickert
PINN
15
21
0
30 Jul 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness
Abed AlRahman Al Makdah
Vishaal Krishnan
Fabio Pasqualetti
20
0
0
30 Mar 2021
Optimization with learning-informed differential equation constraints and its applications
Guozhi Dong
M. Hintermueller
Kostas Papafitsoros
PINN
19
14
0
25 Aug 2020
1