ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02638
  4. Cited By
Comparing Transfer and Meta Learning Approaches on a Unified Few-Shot
  Classification Benchmark

Comparing Transfer and Meta Learning Approaches on a Unified Few-Shot Classification Benchmark

6 April 2021
Vincent Dumoulin
N. Houlsby
Utku Evci
Xiaohua Zhai
Ross Goroshin
Sylvain Gelly
Hugo Larochelle
ArXivPDFHTML

Papers citing "Comparing Transfer and Meta Learning Approaches on a Unified Few-Shot Classification Benchmark"

10 / 10 papers shown
Title
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
I. Ullah
Dustin Carrión-Ojeda
Sergio Escalera
Isabelle M Guyon
Mike Huisman
F. Mohr
Jan N van Rijn
Haozhe Sun
Joaquin Vanschoren
P. Vu
VLM
22
32
0
16 Feb 2023
Contrastive Meta-Learning for Partially Observable Few-Shot Learning
Contrastive Meta-Learning for Partially Observable Few-Shot Learning
Adam Jelley
Amos Storkey
Antreas Antoniou
Sam Devlin
25
6
0
30 Jan 2023
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and
  Federated Image Classification
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification
Aliaksandra Shysheya
J. Bronskill
Massimiliano Patacchiola
Sebastian Nowozin
Richard E. Turner
3DH
FedML
38
27
0
17 Jun 2022
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build
  Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Etienne Bennequin
Myriam Tami
Antoine Toubhans
C´eline Hudelot
VLM
11
4
0
10 May 2022
Head2Toe: Utilizing Intermediate Representations for Better Transfer
  Learning
Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning
Utku Evci
Vincent Dumoulin
Hugo Larochelle
Michael C. Mozer
23
83
0
10 Jan 2022
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot
  Learning
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot Learning
Yang Shu
Zhangjie Cao
Jing Gao
Jianmin Wang
Philip S. Yu
Mingsheng Long
32
10
0
14 Oct 2021
Exploring the Limits of Large Scale Pre-training
Exploring the Limits of Large Scale Pre-training
Samira Abnar
Mostafa Dehghani
Behnam Neyshabur
Hanie Sedghi
AI4CE
55
114
0
05 Oct 2021
CrossTransformers: spatially-aware few-shot transfer
CrossTransformers: spatially-aware few-shot transfer
Carl Doersch
Ankush Gupta
Andrew Zisserman
ViT
201
330
0
22 Jul 2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
66
89
0
06 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
308
11,681
0
09 Mar 2017
1