ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02979
9
8

Few-Shot Meta-Learning on Point Cloud for Semantic Segmentation

7 April 2021
Xudong Li
Li Feng
Leiyuan Li
Chen Wang
    3DPC
ArXivPDFHTML
Abstract

The promotion of construction robots can solve the problem of human resource shortage and improve the quality of decoration. To help the construction robots obtain environmental information, we need to use 3D point cloud, which is widely used in robotics, autonomous driving, and so on. With a good understanding of environmental information, construction robots can work better. However, the dynamic changes of 3D point cloud data may bring difficulties for construction robots to understand environmental information, such as when construction robots renovate houses. The paper proposes a semantic segmentation method for point cloud based on meta-learning. The method includes a basic learning module and a meta-learning module. The basic learning module is responsible for learning data features and evaluating the model, while the meta-learning module is responsible for updating the parameters of the model and improving the model generalization ability. In our work, we pioneered the method of producing datasets for meta-learning in 3D scenes, as well as demonstrated that the Model-Agnostic Meta-Learning (MAML) algorithm can be applied to process 3D point cloud data. At the same time, experiments show that our method can allow the model to be quickly applied to new environments with a few samples. Our method has important applications.

View on arXiv
Comments on this paper