ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.03841
  4. Cited By
ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition

ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition

8 April 2021
Daniela Massiceti
L. Zintgraf
J. Bronskill
Lida Theodorou
Matthew Tobias Harris
Edward Cutrell
C. Morrison
Katja Hofmann
Simone Stumpf
ArXivPDFHTML

Papers citing "ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition"

10 / 10 papers shown
Title
BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
Yu-Yun Tseng
Tanusree Sharma
Lotus Zhang
Abigale Stangl
Leah Findlater
Yang Wang
Danna Gurari
64
0
0
25 Jul 2024
Helping Visually Impaired People Take Better Quality Pictures
Helping Visually Impaired People Take Better Quality Pictures
Maniratnam Mandal
Deepti Ghadiyaram
Danna Gurari
A. Bovik
11
3
0
14 May 2023
Improving ProtoNet for Few-Shot Video Object Recognition: Winner of
  ORBIT Challenge 2022
Improving ProtoNet for Few-Shot Video Object Recognition: Winner of ORBIT Challenge 2022
Liming Gu
Zhixiang Chi
Huan Liu
Yuanhao Yu
Yang Wang
22
5
0
01 Oct 2022
Blind Users Accessing Their Training Images in Teachable Object
  Recognizers
Blind Users Accessing Their Training Images in Teachable Object Recognizers
Jonggi Hong
Jaina Gandhi
Ernest Essuah Mensah
Farnaz Zamiri Zeraati
Ebrima Jarjue
Kyungjun Lee
Hernisa Kacorri
VLM
10
15
0
16 Aug 2022
VizWiz-FewShot: Locating Objects in Images Taken by People With Visual
  Impairments
VizWiz-FewShot: Locating Objects in Images Taken by People With Visual Impairments
Yu-Yun Tseng
Alexander Bell
Danna Gurari
19
8
0
24 Jul 2022
Eliciting and Learning with Soft Labels from Every Annotator
Eliciting and Learning with Soft Labels from Every Annotator
K. M. Collins
Umang Bhatt
Adrian Weller
11
44
0
02 Jul 2022
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and
  Federated Image Classification
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification
Aliaksandra Shysheya
J. Bronskill
Massimiliano Patacchiola
Sebastian Nowozin
Richard E. Turner
3DH
FedML
38
27
0
17 Jun 2022
Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object
  Interactions
Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions
Huaizu Jiang
Xiaojian Ma
Weili Nie
Zhiding Yu
Yuke Zhu
Song-Chun Zhu
Anima Anandkumar
VLM
26
36
0
27 May 2022
Fixing the train-test resolution discrepancy: FixEfficientNet
Fixing the train-test resolution discrepancy: FixEfficientNet
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
AAML
181
110
0
18 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
278
11,677
0
09 Mar 2017
1