ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04114
  4. Cited By
A Theoretical Analysis of Learning with Noisily Labeled Data

A Theoretical Analysis of Learning with Noisily Labeled Data

8 April 2021
Yi Tian Xu
Qi Qian
Hao Li
R. L. Jin
    NoLa
ArXivPDFHTML

Papers citing "A Theoretical Analysis of Learning with Noisily Labeled Data"

2 / 2 papers shown
Title
Curriculum Loss: Robust Learning and Generalization against Label
  Corruption
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
47
170
0
24 May 2019
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
1