ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04282
  4. Cited By
Direct Differentiable Augmentation Search

Direct Differentiable Augmentation Search

9 April 2021
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
ArXivPDFHTML

Papers citing "Direct Differentiable Augmentation Search"

21 / 21 papers shown
Title
FreeAugment: Data Augmentation Search Across All Degrees of Freedom
FreeAugment: Data Augmentation Search Across All Degrees of Freedom
Tom Bekor
Niv Nayman
Lihi Zelnik-Manor
ViT
44
0
0
07 Sep 2024
Learning to Transform Dynamically for Better Adversarial Transferability
Learning to Transform Dynamically for Better Adversarial Transferability
Rongyi Zhu
Zeliang Zhang
Susan Liang
Zhuo Liu
Chenliang Xu
AAML
34
14
0
23 May 2024
Automated data processing and feature engineering for deep learning and
  big data applications: a survey
Automated data processing and feature engineering for deep learning and big data applications: a survey
A. Mumuni
F. Mumuni
TPM
38
47
0
18 Mar 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
60
5
0
13 Mar 2024
SLACK: Stable Learning of Augmentations with Cold-start and KL
  regularization
SLACK: Stable Learning of Augmentations with Cold-start and KL regularization
Juliette Marrie
Michael Arbel
Diane Larlus
Julien Mairal
OffRL
36
4
0
16 Jun 2023
AROID: Improving Adversarial Robustness through Online Instance-wise
  Data Augmentation
AROID: Improving Adversarial Robustness through Online Instance-wise Data Augmentation
Lin Li
Jianing Qiu
Michael W. Spratling
AAML
30
4
0
12 Jun 2023
Revisiting Data Augmentation in Model Compression: An Empirical and
  Comprehensive Study
Revisiting Data Augmentation in Model Compression: An Empirical and Comprehensive Study
Muzhou Yu
Linfeng Zhang
Kaisheng Ma
21
2
0
22 May 2023
No Free Lunch in Self Supervised Representation Learning
No Free Lunch in Self Supervised Representation Learning
Ihab Bendidi
Adrien Bardes
E. Cohen
Alexis Lamiable
Guillaume Bollot
Auguste Genovesio
OOD
49
11
0
23 Apr 2023
RangeAugment: Efficient Online Augmentation with Range Learning
RangeAugment: Efficient Online Augmentation with Range Learning
Sachin Mehta
Saeid Naderiparizi
Fartash Faghri
Maxwell Horton
Lailin Chen
Ali Farhadi
Oncel Tuzel
Mohammad Rastegari
21
6
0
20 Dec 2022
Learning Self-Regularized Adversarial Views for Self-Supervised Vision
  Transformers
Learning Self-Regularized Adversarial Views for Self-Supervised Vision Transformers
Tao Tang
Changlin Li
Guangrun Wang
Kaicheng Yu
Xiaojun Chang
Xiaodan Liang
ViT
18
1
0
16 Oct 2022
LEAVES: Learning Views for Time-Series Data in Contrastive Learning
LEAVES: Learning Views for Time-Series Data in Contrastive Learning
Han Yu
Huiyuan Yang
Akane Sano
AI4TS
22
5
0
13 Oct 2022
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series
  Data with Deep Learning
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series Data with Deep Learning
Huiyuan Yang
Han Yu
Akane Sano
AI4TS
19
5
0
13 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
20
10
0
29 Sep 2022
Optimizing transformations for contrastive learning in a differentiable
  framework
Optimizing transformations for contrastive learning in a differentiable framework
Camille Ruppli
Pietro Gori
R. Ardon
Isabelle Bloch
MedIm
20
2
0
27 Jul 2022
Universal Adaptive Data Augmentation
Universal Adaptive Data Augmentation
Xiaogang Xu
Hengshuang Zhao
14
5
0
14 Jul 2022
Deep AutoAugment
Deep AutoAugment
Yu Zheng
Z. Zhang
Shen Yan
Mi Zhang
ViT
13
26
0
11 Mar 2022
SODA: Self-organizing data augmentation in deep neural networks --
  Application to biomedical image segmentation tasks
SODA: Self-organizing data augmentation in deep neural networks -- Application to biomedical image segmentation tasks
Arnaud Deleruyelle
J. Klein
Cristian Versari
OOD
16
0
0
07 Feb 2022
DIVA: Dataset Derivative of a Learning Task
DIVA: Dataset Derivative of a Learning Task
Yonatan Dukler
Alessandro Achille
Giovanni Paolini
Avinash Ravichandran
M. Polito
Stefano Soatto
14
5
0
18 Nov 2021
DAAS: Differentiable Architecture and Augmentation Policy Search
DAAS: Differentiable Architecture and Augmentation Policy Search
Xiaoxing Wang
Xiangxiang Chu
Junchi Yan
Xiaokang Yang
24
5
0
30 Sep 2021
Local Patch AutoAugment with Multi-Agent Collaboration
Local Patch AutoAugment with Multi-Agent Collaboration
Shiqi Lin
Tao Yu
Ruoyu Feng
Xin Li
Xin Jin
Zhibo Chen
11
15
0
20 Mar 2021
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,326
0
05 Nov 2016
1