ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05156
15
7

Estimation of Summary-to-Text Inconsistency by Mismatched Embeddings

12 April 2021
Oleg V. Vasilyev
John Bohannon
    HILM
ArXivPDFHTML
Abstract

We propose a new reference-free summary quality evaluation measure, with emphasis on the faithfulness. The measure is designed to find and count all possible minute inconsistencies of the summary with respect to the source document. The proposed ESTIME, Estimator of Summary-to-Text Inconsistency by Mismatched Embeddings, correlates with expert scores in summary-level SummEval dataset stronger than other common evaluation measures not only in Consistency but also in Fluency. We also introduce a method of generating subtle factual errors in human summaries. We show that ESTIME is more sensitive to subtle errors than other common evaluation measures.

View on arXiv
Comments on this paper