ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05622
  4. Cited By
Where and What? Examining Interpretable Disentangled Representations

Where and What? Examining Interpretable Disentangled Representations

7 April 2021
Xinqi Zhu
Chang Xu
Dacheng Tao
    FAtt
    DRL
ArXivPDFHTML

Papers citing "Where and What? Examining Interpretable Disentangled Representations"

6 / 6 papers shown
Title
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
22
77
0
21 Nov 2022
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis
Zhiheng Li
Martin Renqiang Min
K. Li
Chenliang Xu
EGVM
25
39
0
29 Mar 2022
Modelling Direct Messaging Networks with Multiple Recipients for Cyber
  Deception
Modelling Direct Messaging Networks with Multiple Recipients for Cyber Deception
Kristen Moore
Cody James Christopher
David Liebowitz
Surya Nepal
R. Selvey
19
4
0
21 Nov 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
27
22
0
07 Jun 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,344
0
12 Dec 2018
1