ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07365
  4. Cited By
D-Cliques: Compensating for Data Heterogeneity with Topology in
  Decentralized Federated Learning

D-Cliques: Compensating for Data Heterogeneity with Topology in Decentralized Federated Learning

15 April 2021
A. Bellet
Anne-Marie Kermarrec
Erick Lavoie
    FedML
ArXivPDFHTML

Papers citing "D-Cliques: Compensating for Data Heterogeneity with Topology in Decentralized Federated Learning"

2 / 2 papers shown
Title
Decentralized Federated Learning: Fundamentals, State of the Art,
  Frameworks, Trends, and Challenges
Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges
Enrique Tomás Martínez Beltrán
Mario Quiles Pérez
Pedro Miguel Sánchez Sánchez
Sergio López Bernal
Gérome Bovet
M. Pérez
Gregorio Martínez Pérez
Alberto Huertas Celdrán
FedML
18
221
0
15 Nov 2022
Throughput-Optimal Topology Design for Cross-Silo Federated Learning
Throughput-Optimal Topology Design for Cross-Silo Federated Learning
Othmane Marfoq
Chuan Xu
Giovanni Neglia
Richard Vidal
FedML
43
85
0
23 Oct 2020
1