ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07954
  4. Cited By
Towards Human-Understandable Visual Explanations:Imperceptible
  High-frequency Cues Can Better Be Removed

Towards Human-Understandable Visual Explanations:Imperceptible High-frequency Cues Can Better Be Removed

16 April 2021
Kaili Wang
José Oramas
Tinne Tuytelaars
    AAML
ArXivPDFHTML

Papers citing "Towards Human-Understandable Visual Explanations:Imperceptible High-frequency Cues Can Better Be Removed"

2 / 2 papers shown
Title
Quantitative Metrics for Evaluating Explanations of Video DeepFake
  Detectors
Quantitative Metrics for Evaluating Explanations of Video DeepFake Detectors
Federico Baldassarre
Quentin Debard
Gonzalo Fiz Pontiveros
Tri Kurniawan Wijaya
44
4
0
07 Oct 2022
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
282
10,354
0
12 Dec 2018
1