ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09355
  4. Cited By
Using Machine Learning at Scale in HPC Simulations with SmartSim: An
  Application to Ocean Climate Modeling

Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling

13 April 2021
Sam Partee
M. Ellis
Alessandro Rigazzi
S. Bachman
Gustavo M. Marques
Andrew Shao
Benjamin Robbins
    AI4ClAI4CE
ArXiv (abs)PDFHTML

Papers citing "Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling"

5 / 5 papers shown
Title
Deep Reinforcement Learning for Turbulence Modeling in Large Eddy
  Simulations
Deep Reinforcement Learning for Turbulence Modeling in Large Eddy Simulations
Marius Kurz
Philipp Offenhäuser
Andrea Beck
AI4CE
82
59
0
21 Jun 2022
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
  Systems
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC Systems
Marius Kurz
Philipp Offenhäuser
Dominic Viola
Oleksandr Shcherbakov
Michael M. Resch
Andrea Beck
AI4CE
88
22
0
13 May 2022
Productive Performance Engineering for Weather and Climate Modeling with
  Python
Productive Performance Engineering for Weather and Climate Modeling with Python
Tal Ben-Nun
Linus Groner
Florian Deconinck
Tobias Wicky
Eddie Davis
...
Lukas Trumper
E. Wu
O. Fuhrer
T. Schulthess
Torsten Hoefler
62
17
0
09 May 2022
Colmena: Scalable Machine-Learning-Based Steering of Ensemble
  Simulations for High Performance Computing
Colmena: Scalable Machine-Learning-Based Steering of Ensemble Simulations for High Performance Computing
Logan T. Ward
Ganesh Sivaraman
J. G. Pauloski
Y. Babuji
Ryan Chard
...
R. Assary
Kyle Chard
L. Curtiss
R. Thakur
Ian Foster
59
40
0
06 Oct 2021
Bridging observation, theory and numerical simulation of the ocean using
  Machine Learning
Bridging observation, theory and numerical simulation of the ocean using Machine Learning
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4ClAI4CE
96
101
0
26 Apr 2021
1