ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.12842
  4. Cited By
End-to-end grasping policies for human-in-the-loop robots via deep
  reinforcement learning

End-to-end grasping policies for human-in-the-loop robots via deep reinforcement learning

26 April 2021
M. Sharif
Deniz Erdogmus
Chris Amato
T. Padır
ArXivPDFHTML

Papers citing "End-to-end grasping policies for human-in-the-loop robots via deep reinforcement learning"

2 / 2 papers shown
Title
MAEA: Multimodal Attribution for Embodied AI
MAEA: Multimodal Attribution for Embodied AI
Vidhi Jain
Jayant Sravan Tamarapalli
Sahiti Yerramilli
Yonatan Bisk
25
0
0
25 Jul 2023
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
216
808
0
13 Nov 2016
1