Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.12848
Cited By
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
26 April 2021
Luca Demetrio
Battista Biggio
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python"
6 / 6 papers shown
Title
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
Marco Rando
Luca Demetrio
Lorenzo Rosasco
Fabio Roli
AAML
24
1
0
23 May 2024
Bayesian Learned Models Can Detect Adversarial Malware For Free
Bao Gia Doan
Dang Quang Nguyen
Paul Montague
Tamas Abraham
O. Vel
S. Çamtepe
S. Kanhere
Ehsan Abbasnejad
D. Ranasinghe
AAML
33
1
0
27 Mar 2024
A Comparison of Adversarial Learning Techniques for Malware Detection
Pavla Louthánová
M. Kozák
M. Jureček
Mark Stamp
AAML
16
2
0
19 Aug 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
22
14
0
31 Jan 2023
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
20
2
0
22 Nov 2021
secml: A Python Library for Secure and Explainable Machine Learning
Maura Pintor
Luca Demetrio
Angelo Sotgiu
Marco Melis
Ambra Demontis
Battista Biggio
AAML
15
15
0
20 Dec 2019
1