ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.13101
  4. Cited By
Initializing LSTM internal states via manifold learning
v1v2 (latest)

Initializing LSTM internal states via manifold learning

Chaos (Chaos), 2021
27 April 2021
Felix P. Kemeth
Tom S. Bertalan
N. Evangelou
Tianqi Cui
S. Malani
Ioannis G. Kevrekidis
ArXiv (abs)PDFHTML

Papers citing "Initializing LSTM internal states via manifold learning"

6 / 6 papers shown
Next Generation Equation-Free Multiscale Modelling of Crowd Dynamics via Machine Learning
Next Generation Equation-Free Multiscale Modelling of Crowd Dynamics via Machine Learning
Hector Vargas Alvarez
Dimitrios G. Patsatzis
Lucia Russo
Ioannis G. Kevrekidis
Constantinos Siettos
AI4CE
122
2
0
05 Aug 2025
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature HierarchyInternational Conference on Learning Representations (ICLR), 2024
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
477
8
0
28 Oct 2024
Tipping Points of Evolving Epidemiological Networks: Machine
  Learning-Assisted, Data-Driven Effective Modeling
Tipping Points of Evolving Epidemiological Networks: Machine Learning-Assisted, Data-Driven Effective ModelingChaos (Chaos), 2023
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Alexei Makeev
Ioannis G. Kevrekidis
293
3
0
01 Nov 2023
Learning Absorption Rates in Glucose-Insulin Dynamics from Meal
  Covariates
Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates
Ke Alexander Wang
Matthew E. Levine
Jiaxin Shi
E. Fox
242
4
0
27 Apr 2023
Some of the variables, some of the parameters, some of the times, with
  some physics known: Identification with partial information
Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial informationComputers and Chemical Engineering (Comput. Chem. Eng.), 2023
S. Malani
Tom S. Bertalan
Tianqi Cui
J. Avalos
Michael Betenbaugh
Ioannis G. Kevrekidis
PINNAI4CE
196
5
0
27 Apr 2023
A Framework for Machine Learning of Model Error in Dynamical Systems
A Framework for Machine Learning of Model Error in Dynamical SystemsCommunications of the American Mathematical Society (Comm. Amer. Math. Soc.), 2021
Matthew E. Levine
Andrew M. Stuart
299
76
0
14 Jul 2021
1
Page 1 of 1